【HDU3595】GG and MM(博弈论)
【HDU3595】GG and MM(博弈论)
题面
HDU
一个游戏由多个游戏组成,每次每个操作者必须操作所有可以操作的游戏,操作集合为空者输。
每个游戏由两堆石子组成,每次可以从较多的那一堆中取走较小那堆的数量的倍数个石子。
判断胜负。
题解
\(Every-SG\),所以我们只需要分开考虑两堆。
这题有点性质,假设两堆石子为\(x,y,x<y\),那么令\(k=\lfloor\frac{y}{x}\rfloor\)
如果\(k=1\),显然操作唯一,直接取反后继的\(sg\)函数即可。
如果\(k>1\),显然先手可以控制是把所有倍数都取完还是强制将\(k\)变成\(1\),让后手做一次确定操作,所有此时先手必胜,那么只需要考虑\(k=1\)时的后继状态的\(N/P\)情况,做出相应的抉择就好了。
同理维护\(step\)值即可。
最后判断\(step\)最大值来判定胜负情况。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAX 1010
int n,m,sg[MAX][MAX],step[MAX][MAX];
int Getsg(int x,int y)
{
if(x>y)swap(x,y);
if(~sg[x][y])return sg[x][y];
if(!x||!y)return sg[x][y]=0;
int r=y%x,d=y/x;
if(d==1)
{
sg[x][y]=Getsg(r,x)^1;
step[x][y]=step[r][x]+1;
return sg[x][y];
}
else
{
step[x][y]=Getsg(r,x)+1+step[r][x];
return sg[x][y]=1;
}
}
int main()
{
memset(sg,-1,sizeof(sg));
ios::sync_with_stdio(false);
while(cin>>n)
{
int mx=0,a,b;
while(n--)
{
cin>>a>>b;if(a>b)swap(a,b);Getsg(a,b);
mx=max(mx,step[a][b]);
}
if(mx&1)cout<<"MM"<<endl;
else cout<<"GG"<<endl;
}
return 0;
}
【HDU3595】GG and MM(博弈论)的更多相关文章
- hdu 3595 GG and MM 博弈论
同时进行,必须操作这就是Every-SG的特点 同样在贾志豪的论文中有提到这种游戏:组合游戏略述——浅谈SG游戏的若干拓展及变形 其中这个游戏特点不仅有必胜和必败,而且有时间长短的博弈,对于自己必胜的 ...
- GG and MM HDU - 3595 Every-SG
$ \color{#0066ff}{ 题目描述 }$ 两堆石子,GG和MM轮流取,每次在一堆石子中取另一堆石子的k\((k\ge1)\)倍,不能操作的输 现在二人要玩n个这样的游戏,每回合每个人对每个 ...
- Java网络编程-你是GG还是MM?
第六阶段 网络编程 每一台计算机通过网络连接起来,达到了数据互动的效果,而网络编程所解决的问题就是如何让程序与程序之间实现数据的通讯与互动 在吗?你是GG还是MM? (一) 网络模型概述 (1) 两大 ...
- HDU 3595 GG and MM [Every-SG]
传送门 题意: 两个数$x,y$,一个人的决策为让大数减去小数的任意倍数(结果不能为负),出现0的人胜 一堆这样的游戏同时玩 Every-SG 游戏规定,对于还没有结束的单一游戏,游戏者必须对该游戏进 ...
- 博弈论与SG函数
巴什博奕: 两个顶尖聪明的人在玩游戏,有n个石子,每人可以随便拿1−m个石子,不能拿的人为败者,问谁会胜利 结论: 设当前的石子数为\(n=k∗(m+1)\)即\(n%(m+1)==0\)时先手一定失 ...
- 博弈论题目总结(二)——SG组合游戏及变形
SG函数 为了更一般化博弈问题,我们引入SG函数 SG函数有如下性质: 1.如果某个状态SG函数值为0,则它后继的每个状态SG函数值都不为0 2.如果某个状态SG函数值不为0,则它至少存在一个后继的状 ...
- 博弈论BOSS
基础博弈的小结:http://blog.csdn.net/acm_cxlove/article/details/7854530 经典翻硬币游戏小结:http://blog.csdn.net/acm_c ...
- 每一个可以移动的棋子都要移动——Every-SG 游戏
先看一个问题 HDU 3595 GG and MM (Every_SG博弈) 题目有N个游戏同时进行,每个游戏有两堆石子,每次从个数多的堆中取走数量小的数量的整数倍的石子.取最后一次的获胜.并且N个游 ...
- Codeforces Round #324 (Div. 2) C (二分)
题目链接:http://codeforces.com/contest/734/problem/C 题意: 玩一个游戏,一开始升一级需要t秒时间,现在有a, b两种魔法,两种魔法分别有m1, m2种效果 ...
随机推荐
- Redis缓存用起来
Redis缓存用起来 1. 引言 创建任务时我们需要指定分配给谁,Demo中我们使用一个下拉列表用来显示当前系统的所有用户,以供用户选择.我们每创建一个任务时都要去数据库取一次用户列表,然后绑定到用户 ...
- [2017BUAA软工助教]团队alpha得分总表
一.累计得分 项目 介绍 采访 贡献分 功能 技术 α例会 α发布 α测试 α展示 α事后 合计 满分 10 10 10 10 10 50 10 10 150 10 280 hotcode5 10 9 ...
- PAT L2-024 部落
https://pintia.cn/problem-sets/994805046380707840/problems/994805056736444416 在一个社区里,每个人都有自己的小圈子,还可能 ...
- gethostbyname用法
//会优先查询解析%windir%\system32\drivers\etc\hosts中静态dns表 //一个域名可对应多个IP hostent->h_addr_list ==> 是in ...
- 测试工具之ab
ab命令原理 Apache的ab命令模拟多线程并发请求,测试服务器负载压力,也可以测试nginx.lighthttp.IIS等其它Web服务器的压力. ab命令对发出负载的计算机要求很低,既不会占 ...
- C# DataTable详解
添加引用 using System.Data; 创建表 //创建一个空表 DataTable dt = new DataTable(); //创建一个名为"Table_New"的空 ...
- [转帖]浏览器的F5和Ctrl+F5
浏览器的F5和Ctrl+F5 https://www.cnblogs.com/xiangcode/p/5369084.html 在浏览器里中,按F5键和按F5同时按住Ctrl键(简称Ctrl+F5), ...
- 二叉搜索树的第k个节点
给定一棵二叉搜索树,请找出其中的第k小的结点.例如, (5,3,7,2,4,6,8) 中,按结点数值大小顺序第三小结点的值为4. = =一看就想到中序遍历 public class Soluti ...
- from组件补充
一.定义的规则 class TeacherForm(Form): #必须继承Form # 创建字段,本质上是正则表达式 username = fields.CharField( required=Tr ...
- python爬虫之git的使用(github的使用)
上面博文中我们简单的了解了一下基本的git操作,但是我们都是将代码放到了本地的仓库里面,但是如果我们是一个团队开发的话,肯定不会放到每个人的本地,必须得有个统一的地方存放代码,国外的大家都在使用git ...