如何用kaldi做孤立词识别三
这次wer由15%下降到0%了,后面跑更多的模型
LOG (apply-cmvn[5.2.124~1396-70748]:main():apply-cmvn.cc:162) Applied cepstral mean normalization to 20 utterances, errors on 0
200_001_001 espresso
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_001 is -9.06026 over 118 frames.
200_001_002 lungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_002 is -9.0791 over 87 frames.
200_001_003 extralungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_003 is -8.72467 over 121 frames.
200_001_004 cappuccino
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_004 is -9.11234 over 83 frames.
200_001_005 lattemakiato
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_005 is -9.0466 over 120 frames.
200_001_006 bluemountain
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_006 is -8.86214 over 116 frames.
200_001_007 ok
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_007 is -10.095 over 94 frames.
200_001_008 yes
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_008 is -9.39383 over 46 frames.
200_001_009 no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_009 is -9.29525 over 68 frames.
200_001_010 thankyou
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_001_010 is -9.45605 over 73 frames.
200_002_001 espresso
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_001 is -8.823 over 99 frames.
200_002_002 lungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_002 is -8.86786 over 85 frames.
200_002_003 extralungo
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_003 is -9.15775 over 123 frames.
200_002_004 cappuccino
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_004 is -9.08465 over 75 frames.
200_002_005 lattemakiato
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_005 is -8.55999 over 117 frames.
200_002_006 bluemountain
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_006 is -9.36011 over 110 frames.
200_002_007 ok
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_007 is -9.99029 over 64 frames.
200_002_008 yes
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_008 is -9.46437 over 77 frames.
200_002_009 no
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_009 is -10.0669 over 51 frames.
200_002_010 thankyou
LOG (gmm-latgen-faster[5.2.124~1396-70748]:DecodeUtteranceLatticeFaster():decoder-wrappers.cc:286) Log-like per frame for utterance 200_002_010 is -9.69364 over 69 frames.
LOG (gmm-latgen-faster[5.2.124~1396-70748]:main():gmm-latgen-faster.cc:176) Time taken 0.457478s: real-time factor assuming 100 frames/sec is 0.0254721
LOG (gmm-latgen-faster[5.2.124~1396-70748]:main():gmm-latgen-faster.cc:179) Done 20 utterances, failed for 0
LOG (gmm-latgen-faster[5.2.124~1396-70748]:main():gmm-latgen-faster.cc:181) Overall log-likelihood per frame is -9.18962 over 1796 frames.
# Accounting: time=0 threads=1
# Ended (code 0) at Fri Oct 13 11:22:18 CST 2017, elapsed time 0 seconds
如何用kaldi做孤立词识别三的更多相关文章
- 如何用kaldi做孤立词识别-初版
---------------------------------------------------------------------------------------------------- ...
- 如何用kaldi做孤立词识别二
基本模型没有变化,主要是调参,配置: %WER 65% 下降到了 15% 后面再继续优化... Graph compilation finish!steps/decode.sh -- ...
- 基于HTK语音工具包进行孤立词识别的使用教程
选自:http://my.oschina.net/jamesju/blog/116151 1前言 最近一直在研究HTK语音识别工具包,前几天完成了工具包的安装编译和测试,这几天又按耐不住好奇,决定自己 ...
- 机器学习&数据挖掘笔记_13(用htk完成简单的孤立词识别)
最近在看图模型中著名的HMM算法,对应的一些理论公式也能看懂个大概,就是不太明白怎样在一个具体的机器学习问题(比如分类,回归)中使用HMM,特别是一些有关状态变量.观察变量和实际问题中变量的对应关系, ...
- yesno孤立词识别kaldi脚本
path.sh主要设定路径等 export KALDI_ROOT=`pwd`/../../.. [ -f $KALDI_ROOT/tools/env.sh ] && . $KALDI_ ...
- 使用CRF做命名实体识别(三)
摘要 本文主要是对近期做的命名实体识别做一个总结,会给出构造一个特征的大概思路,以及对比所有构造的特征对结构的影响.先给出我最近做出来的特征对比: 目录 整体操作流程 特征的构造思路 用CRF++训练 ...
- 亲自动手用HTK实现YES NO孤立词识别
很久以前的发在研学论坛的帖子了,再重新整理了一下,希望对新手有用. 完整版链接:http://yun.baidu.com/s/1hapcE 第一步 创建语音文件 录音 命令:HSLab any_nam ...
- 用CRF做命名实体识别(二)
用CRF做命名实体识别(一) 用CRF做命名实体识别(三) 一. 摘要 本文是对上文用CRF做命名实体识别(一)做一次升级.多添加了5个特征(分别是词性,词语边界,人名,地名,组织名指示词),另外还修 ...
- 用CRF做命名实体识别(一)
用CRF做命名实体识别(二) 用CRF做命名实体识别(三) 用BILSTM-CRF做命名实体识别 博客园的markdown格式可能不太方便看,也欢迎大家去我的简书里看 摘要 本文主要讲述了关于人民日报 ...
随机推荐
- JVM学习03:性能监控工具
JVM学习03:性能监控工具 写在前面:本系列分享主要参考资料是 周志明老师的<深入理解Java虚拟机>第二版. 性能监控工具知识要点Xmind梳理 案例分析 案例分析1-JPS 案例分 ...
- vue 树形下拉框 亲测 好用
https://vue-treeselect.js.org/ 顺带说一个开发中使用这个组件遇到的问题,关于回显之后无法修改的问题 找了很长时间 原因是数据类型导致的问题,数组里面应该是数字类型,直接 ...
- Security.ssl-pinning
SSL Pinning 1. What's SSL Pinning? "SSL Pinning is making sure the client checks the server’s c ...
- CentOS6系统编译部署LAMP(Linux, Apache, MySQL, PHP)环境
我们一般常规的在Linux服务器中配置WEB系统会用到哪种WEB引擎呢?Apache还是比较常用的引擎之一.所以,我们在服务器中配置LAMP(Linux, Apache, MySQL, PHP)是我们 ...
- Python第十六天 类的实例化
首先 , 先定义一个 简单的 Person 类 class Person: head = 1 ear = 2 def eat(self): print('吃饭') 关于什么是类, 定义类, 类对象,类 ...
- python基础之Day17
一.包 1.包 含有--init--.py的文件夹 是模块的一种形式 本质是一个文件夹(用来存放文件,包内所有的文件都是用来被导入的) import 包 包.名字 往包的init里加名字 导 ...
- oracle中的日期函数的使用
TO_DATE格式(以时间:2007-11-02 13:45:25为例) Year: yy two digits 两位年 显示值:07 ...
- [SqlServer]SQL Server创建约束图解
SQLServer 中有五种约束, Primary Key 约束. Foreign Key 约束. Unique 约束. Default 约束和 Check 约束,今天使用SQL Server2008 ...
- OvO
OvO 知乎 网易云 图书馆 B站 小众软件 360极速浏览器下载 开源下载工具 下载地址1 下载地址2 下载地址3
- 0.计划用libgdx写一个六边形回合制slg兵棋游戏
题主层是一个e社游戏迷,但是因为国家政策,e社已经放弃了中国市场,所以决定自己来做,暂时当一个副业 大致计划: 1,先完成一个类似将军的荣耀的战旗游戏 2.再在其基础上制作一个钢铁雄心或世2 3.然后 ...