Description

The cows have once again tried to form a startup company, failing to remember from past experience that cows make terrible managers!The cows, conveniently numbered 1…N1…N (1≤N≤100,000), organize the company as a tree, with cow 1 as the president (the root of the tree). Each cow except the president has a single manager (its "parent" in the tree). Each cow ii has a distinct proficiency rating, p(i), which describes how good she is at her job. If cow ii is an ancestor (e.g., a manager of a manager of a manager) of cow jj, then we say jj is a subordinate of ii.

Unfortunately, the cows find that it is often the case that a manager has less proficiency than several of her subordinates, in which case the manager should consider promoting some of her subordinates. Your task is to help the cows figure out when this is happening. For each cow ii in the company, please count the number of subordinates jj where p(j)>p(i).

n只奶牛构成了一个树形的公司,每个奶牛有一个能力值pi,1号奶牛为树根。

问对于每个奶牛来说,它的子树中有几个能力值比它大的。

Input

The first line of input contains N

The next N lines of input contain the proficiency ratings p(1)…p(N) for the cows. Each is a distinct integer in the range 1…1,000,000,000.The next N-1 lines describe the manager (parent) for cows 2…N.Recall that cow 1 has no manager, being the president.

n,表示有几只奶牛 n<=100000

接下来n行为1-n号奶牛的能力值pi

接下来n-1行为2-n号奶牛的经理(树中的父亲)

Output

Please print N lines of output. The ith line of output should tell the number of subordinates of cow ii with higher proficiency than cow i.

共n行,每行输出奶牛i的下属中有几个能力值比i大

Sample Input

5
804289384
846930887
681692778
714636916
957747794
1
1
2
3

Sample Output

2
0
1
0
0

大概是线段树合并的裸题……?

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define LL long long
using namespace std;
const int N=1e5+;
int n,cnt,tot;
int id[N],p[N],fa[N],first[N],ans[N],root[N];
int ls[N*],rs[N*],tr[N*];
struct edge{int to,next;}e[N];
int read()
{
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
void ins(int u,int v){e[++tot]=(edge){v,first[u]};first[u]=tot;}
void insert(int l,int r,int& pos,int num,int w)
{
pos=++cnt;tr[pos]+=w;
if(l==r)return;
int mid=(l+r)>>;
if(num<=mid)insert(l,mid,ls[pos],num,w);
else insert(mid+,r,rs[pos],num,w);
}
int merge(int now,int last)
{
if(!now||!last)return now^last;//子树为空就直接并上去
ls[now]=merge(ls[now],ls[last]);
rs[now]=merge(rs[now],rs[last]);
tr[now]=tr[ls[now]]+tr[rs[now]];
return now;
}
int query(int l,int r,int pos,int L,int R)
{
if(L<=l&&R>=r)return tr[pos];
int sum=,mid=(l+r)>>;
if(L<=mid)sum+=query(l,mid,ls[pos],L,R);
if(R>mid)sum+=query(mid+,r,rs[pos],L,R);
return sum;
}
void dfs(int x)
{
insert(,n,root[x],id[x],);
for(int i=first[x];i;i=e[i].next)dfs(e[i].to);
for(int i=first[x];i;i=e[i].next)root[x]=merge(root[x],root[e[i].to]);
ans[x]=query(,n,root[x],id[x]+,n);
}
int main()
{
n=read();
for(int i=;i<=n;i++)id[i]=p[i]=read();
sort(p+,p+n+);
for(int i=;i<=n;i++)id[i]=lower_bound(p+,p+n+,id[i])-p;
for(int i=;i<=n;i++)fa[i]=read(),ins(fa[i],i);
dfs();
for(int i=;i<=n;i++)printf("%d\n",ans[i]);
return ;
}

【bzoj 4756】[Usaco2017 Jan] Promotion Counting的更多相关文章

  1. 【bzoj4756】[Usaco2017 Jan]Promotion Counting 离散化+树状数组

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832263.html 题目描述 The cows have once again tried to form a s ...

  2. [BZOJ4756][Usaco2017 Jan]Promotion Counting 树状数组

    4756: [Usaco2017 Jan]Promotion Counting Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 305  Solved: ...

  3. BZOJ 4756 [Usaco2017 Jan]Promotion Counting(线段树合并)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4756 [题目大意] 给出一棵树,对于每个节点,求其子树中比父节点大的点个数 [题解] ...

  4. 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数

    题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...

  5. 【BZOJ】4756: [Usaco2017 Jan]Promotion Counting

    [题意]带点权树,统计每个结点子树内点权比它大的结点数. [算法]线段树合并 [题解]对每个点建权值线段树(动态开点),DFS中将自身和儿子线段树合并后统计. 注意三个量tot,cnt,tots,细心 ...

  6. bzoj 4756: [Usaco2017 Jan]Promotion Counting【dfs+树状数组】

    思路还是挺好玩的 首先简单粗暴的想法是dfs然后用离散化权值树状数组维护,但是这样有个问题就是这个全局的权值树状数组里并不一定都是当前点子树里的 第一反应是改树状数组,但是显然不太现实,但是可以这样想 ...

  7. bzoj 4756 [Usaco2017 Jan]Promotion Counting——线段树合并

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 线段树合并裸题.那种返回 int 的与传引用的 merge 都能过.不知别的题是不是这 ...

  8. 【dsu || 线段树合并】bzoj4756: [Usaco2017 Jan]Promotion Counting

    调半天原来是dsu写不熟 Description The cows have once again tried to form a startup company, failing to rememb ...

  9. BZOJ[Usaco2017 Jan]Promotion Counting——线段树合并

    题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...

随机推荐

  1. 单片机pwm控制基本原理详解

    前言 PWM是Pulse Width Modulation的缩写,它的中文名字是脉冲宽度调制,一种说法是它利用微处理器的数字输出来对模拟电路进行控制的一种有效的技术,其实就是使用数字信号达到一个模拟信 ...

  2. 2019.4.1考试&2019.4.2考试&2019.4.4考试

    4.1:T1原题,T2码农板子题,T3板子题 4.2 好像是三个出题人分别出的 以及#define *** 傻逼 T1 思维好题 转成树形DP,$dp[i][j]$表示点i值为j的方案数,记录前缀和转 ...

  3. vue router获取整条路径参数

    $route.path 当前路由对象的路径,如'/vi$route.query 请求参数,如/foo?user=1获取到query.user = 1$route.router 所属路由器以及所属组件信 ...

  4. numpy 多维数组及数组操作

    NumPy是Python语言的一个扩充程序库.支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库.Numpy内部解除了Python的PIL(全局解释器锁),运算效率极好,是大量机 ...

  5. fcntl F_SETFL

    F_SETFL file set flag F_SETFL命令允许更改的标志有O_APPEND,O_NONBLOCK,O_NOATIME,O_DIRECT,O_ASYNC 这个操作修改文件状态标记适用 ...

  6. dubbox知识

    关于dubbox有以下小知识要注意: 1.传参数不能传List参数以及NULL,可以传""和0 2.不能传int类型 3.配置provider的时候,注意不要启动重连机制 < ...

  7. feemarker知识

    map遍历多出来一些东西解决: <#if rightType?exists><#list rightType.keySet() as typeId> <h2>${r ...

  8. vue 本地存储数据 sessionStorage

    在vuex 下的 action下的userAction.js中添加 export function login(from, self) { axPost('/api/login', from, fun ...

  9. 3D游戏的角色移动

    * -----英雄的移动控制 * * * * */ using System.Collections; using System.Collections.Generic; using UnityEng ...

  10. 随机数Random

    掷骰子10次,统计1.2出现的次数 public static void Main(string[] args) { ,a2=; Random random=new Random();//创建随机数对 ...