独立同分布的采样x1,x2,…,xn,θ为模型参数,f为我们所使用的模型。参数为θ的模型f产生上述采样可表示为

f(x1,x2,…,xn|θ)=πf(xi|θ)

已知的为x1,x2,…,xn,未知为θ,故似然定义为:L(θ|x1,x2,…,xn)=f(x1,x2,…,xn|θ)=πf(xi|θ)

常用的是两边取对数,得到公式如下:

lnL(θ|x1,x2,…,xn)=Σlnf(xi|θ)

其中lnL(θ|x1,x2,…,xn)称为对数似然,

称为平均对数似然。而我们平时所称的最大似然为最大的对数平均似然,即:

  

MLE的更多相关文章

  1. 萌新笔记——Cardinality Estimation算法学习(二)(Linear Counting算法、最大似然估计(MLE))

    在上篇,我了解了基数的基本概念,现在进入Linear Counting算法的学习. 理解颇浅,还请大神指点! http://blog.codinglabs.org/articles/algorithm ...

  2. 最大似然估计 (MLE) 最大后验概率(MAP)

    1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布 ...

  3. 最大似然估计(MLE)与最小二乘估计(LSE)的区别

    最大似然估计与最小二乘估计的区别 标签(空格分隔): 概率论与数理统计 最小二乘估计 对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小. ...

  4. 最大似然估计(MLE)和最大后验概率(MAP)

    最大似然估计: 最大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”.简单而言,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知 ...

  5. MLE MAP EM

    1.最大似然估计 (MLE):  什么是最大似然估计?     问题:给定一组观察数据还有一个参数待定的模型,如何来估计这个未知参数呢? 观察数据(x1,y1)......(xn,yn)   待定模型 ...

  6. python sklearn PCA源码阅读:参数n_components的设置(设为‘mle’出错的原因)

    在介绍n_components参数之前,首先贴一篇PCA参数详解的文章:http://www.cnblogs.com/akrusher/articles/6442549.html. 按照文章中对于n_ ...

  7. 参数估计:最大似然估计MLE

    http://blog.csdn.net/pipisorry/article/details/51461997 最大似然估计MLE 顾名思义,当然是要找到一个参数,使得L最大,为什么要使得它最大呢,因 ...

  8. 频率学派与贝叶斯学派(先验分布与后验分布,MLE和MAP)

    频率学派(古典学派)和贝叶斯学派是数理统计领域的两大流派. 这两大流派对世界的认知有本质的不同:频率学派认为世界是确定的,有一个本体,这个本体的真值是不变的,我们的目标就是要找到这个真值或真值所在的范 ...

  9. 详解最大似然估计(MLE)、最大后验概率估计(MAP),以及贝叶斯公式的理解

    转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/ ...

  10. 补充资料——自己实现极大似然估计(最大似然估计)MLE

    这篇文章给了我一个启发,我们可以自己用已知分布的密度函数进行组合,然后构建一个新的密度函数啦,然后用极大似然估计MLE进行估计. 代码和结果演示 代码: #取出MASS包这中的数据 data(geys ...

随机推荐

  1. P1972 HHのnecklace 离线+树状数组

    此题莫队可过 然而太难了...... 我在胡雨菲那看的解法,然后自己打了一波,调了一个错,上交,自信AC. 做法:离线,对于L排序. 每种颜色可能出现很多次,那么我们如何不算重复呢? 只需把[L,n] ...

  2. Django 项目内利用ORM直接运行脚本读库

    #导包 import os import sys #将脚本所在工程添加到环境变量 #绝对路径 # sys.path.append('c:/Users/nxy/www/mymac') #相对路径 sys ...

  3. eCharts使用图表简单示例

    https://blog.csdn.net/hlbt0112/article/details/48862427 1. eCharts官网 http://echarts.baidu.com/index. ...

  4. 第六节,TensorFlow编程基础案例-保存和恢复模型(中)

    在我们使用TensorFlow的时候,有时候需要训练一个比较复杂的网络,比如后面的AlexNet,ResNet,GoogleNet等等,由于训练这些网络花费的时间比较长,因此我们需要保存模型的参数. ...

  5. 导出为word文档

    原来用freemarker就可以,真是太简便了.先设计一张文档,然后把要输出的值用freemarker取值表达式获取数据,最后保存为ftl文件,再调整一下就可以了.

  6. UI动画的一些制作过程

    选中将要制作的3D物体,window----Animation----录制,选中的AddKey在之间的节点前点左键.

  7. (数学) PTA 1005 继续(3n+1)猜想 (25 分)

    1005 继续(3n+1)猜想 (25 分) 卡拉兹(Callatz)猜想已经在1001中给出了描述.在这个题目里,情况稍微有些复杂. 当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程 ...

  8. php+mysql简单的添加和删除小案例

    1.分析 index.php是呈现列表,通过点击列表页上的添加和删除按钮,对列表页上面的进行操作 index.php TODO:要将数据库里面的内容呈现到页面中 (1)连接数据库 (2)查询数据 (3 ...

  9. mysql删除大表更快的drop table办法

    mysql删除大表更快的drop table办法 参考资料:https://blog.csdn.net/anzhen0429/article/details/76284320 利用硬链接和trunca ...

  10. linux下统计文本行数的各种方法

    方法一:awk  awk '{print NR}' test1.txt | tail -n1