摘要(以下内容来自百度)

Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。

该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

简介编辑

在计算机科学中,Floyd-Warshall算法是一种在具有正或负边缘权重(但没有负周期)的加权图中找到最短路径的算法。算法的单个执行将找到所有顶点对之间的最短路径的长度(加权)。 虽然它不返回路径本身的细节,但是可以通过对算法的简单修改来重建路径。 该算法的版本也可用于查找关系R的传递闭包,或(与Schulze投票系统相关)在加权图中所有顶点对之间的最宽路径。

Floyd-Warshall算法是动态规划的一个例子,并在1962年由Robert Floyd以其当前公认的形式出版。然而,它基本上与Bernard Roy在1959年先前发表的算法和1962年的Stephen Warshall中找到图形的传递闭包基本相同,并且与Kleene的算法密切相关 在1956年)用于将确定性有限自动机转换为正则表达式。算法作为三个嵌套for循环的现代公式首先由Peter Ingerman在1962年描述。

该算法也称为Floyd算法,Roy-Warshall算法,Roy-Floyd算法或WFI算法。 [2]

核心思路编辑

路径矩阵

通过一个图的权值矩阵求出它的每两点间的最短路径矩阵。 [3]

从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出矩阵D(n)。矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。

采用松弛技术(松弛操作),对在i和j之间的所有其他点进行一次松弛。所以时间复杂度为O(n^3);

状态转移方程

其状态转移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]};

map[i,j]表示i到j的最短距离,K是穷举i,j的断点,map[n,n]初值应该为0,或者按照题目意思来做。

当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路。

算法过程编辑

1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。

把图用邻接矩阵G表示出来,如果从Vi到Vj有路可达,则G[i][j]=d,d表示该路的长度;否则G[i][j]=无穷大。定义一个矩阵D用来记录所插入点的信息,D[i][j]表示从Vi到Vj需要经过的点,初始化D[i][j]=j。把各个顶点插入图中,比较插点后的距离与原来的距离,G[i][j] = min( G[i][j], G[i][k]+G[k][j] ),如果G[i][j]的值变小,则D[i][j]=k。在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。

比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。 [4]

时间复杂度与空间复杂度编辑

时间复杂度:O(n^3);

空间复杂度:O(n^2)

优缺点分析编辑

Floyd算法适用于APSP(All Pairs Shortest Paths,多源最短路径),是一种动态规划算法,稠密图效果最佳,边权可正可负。此算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次Dijkstra算法,也要高于执行|V|次SPFA算法。

优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单。

缺点:时间复杂度比较高,不适合计算大量数据。 [5]

关键的路径输出

例如

具体看代码

代码

#include<bits/stdc++.h>
using namespace std;
const int inf=999999;
int mp[20][20],path[20][20];
int n,m;
void print(int a,int b){
if(path[a][b]==-1) return;//因为开始初始化为-1,这里就可以避免相邻的再次输出
print(a,path[a][b]);//前半部
cout<<path[a][b]<<"-->";//输出该点
print(path[a][b],b);//后半部
}
int main(){
// freopen("in.txt","r",stdin);
while(cin>>n>>m){
memset(path,-1,sizeof(path));//初始化-1
for(int i=0;i<n;i++)
for(int j=0;j<n;j++) if(i==j) mp[i][j]=0;
else mp[i][j]=inf;
int Start,End,dis;
for(int i=0;i<m;i++)
{
cin>>Start>>End>>dis;
mp[Start][End]=dis;
}
//三层循环
for(int k=0;k<n;k++)
{
//第k个点进行松弛
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
if(mp[i][j]>mp[i][k]+mp[k][j])//如果能够缩短就更新距离
{
mp[i][j]=mp[i][k]+mp[k][j];
path[i][j]=k;//记录能松弛的点
}
}
cout<<"The shortest path between vertices\n";
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
{
if(mp[i][j]==inf){//两者不通
cout<<i<<' '<<j;
cout<<" These two points cannot be reached\n\n"; continue;
}
cout<<i<<" to "<<j<<" shortest path is "<<mp[i][j]<<endl;
cout<<"The specific path is\n";
cout<<i<<"-->";
print(i,j);
cout<<j<<' ';
cout<<endl<<endl;
}
}
return 0;
}
//输入数据
/*
10 14
0 1 45
0 2 35
0 3 50
1 2 20
1 5 90
1 8 70
2 4 50
3 4 50
5 6 20
5 7 50
5 8 50
6 0 40
6 3 40
9 8 35
*/

Floyd最短路(带路径输出)的更多相关文章

  1. Floyd最短路及路径输出

    引例 下图表示城市之间的交通路网,线段上的数字表示费用.如图,求$V_{1}$→$V_{n}$最短路径长度及路径 样例数据 输入 10 0 2 5 1 0 0 0 0 0 0 0 0 0 0 12 1 ...

  2. URAL 1004 Sightseeing Trip(floyd求最小环+路径输出)

    https://vjudge.net/problem/URAL-1004 题意:求路径最小的环(至少三个点),并且输出路径. 思路: 一开始INF开大了...无限wa,原来相加时会爆int... 路径 ...

  3. poj 2127 LCIS 带路径输出

    这个题   用一维 为什么错了: 因为 用一维 dp 方程肯定也是一维:但是有没有想,第 i 个字符更新了 j 位置的最优结果,然后 k 字符又一次更新了  j 位置的最优值,然后  我的结果是  i ...

  4. ACM学习之路___HDU 1385(带路径保存的 Floyd)

    Description These are N cities in Spring country. Between each pair of cities there may be one trans ...

  5. Pots(POJ - 3414)【BFS 寻找最短路+路径输出】

    Pots(POJ - 3414) 题目链接 算法 BFS 1.这道题问的是给你两个体积分别为A和B的容器,你对它们有三种操作,一种是装满其中一个瓶子,另一种是把其中一个瓶子的水都倒掉,还有一种就是把其 ...

  6. Floyd最短路算法

    Floyd最短路算法 ----转自啊哈磊[坐在马桶上看算法]算法6:只有五行的Floyd最短路算法 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计 ...

  7. 【啊哈!算法】算法6:只有五行的Floyd最短路算法

            暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程.         上图中有 ...

  8. 【坐在马桶上看算法】算法6:只有五行的Floyd最短路算法

            暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程.         上图中有 ...

  9. Delivering Goods UVALive - 7986(最短路+最小路径覆盖)

    Delivering Goods UVALive - 7986(最短路+最小路径覆盖) 题意: 给一张n个点m条边的有向带权图,给出C个关键点,问沿着最短路径走,从0最少需要出发多少次才能能覆盖这些关 ...

随机推荐

  1. 如何实现javascript js 类命名空间的写法

    转载 猫猫小屋http://www.maomao365.com/?p=823 在C#中有namespace概念,java中有package的概念,有了这些概念之后,在系统的运行时,每一个方法就会拥有唯 ...

  2. python 函数参数为*和**的作用与区别

    def function(*args):print(args) 中*的作用:表示此时参数为一个元祖. def function(**args):print(args)中**的作用:表示此时参数为一个字 ...

  3. org.hibernate.NonUniqueObjectException

    错误如下: 2017-3-29 15:17:52~ERROR~org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperV ...

  4. c/c++ 标准库 set 自定义关键字类型与比较函数

    标准库 set 自定义关键字类型与比较函数 问题:哪些类型可以作为标准库set的关键字类型呢??? 答案: 1,任意类型,但是需要额外提供能够比较这种类型的比较函数. 2,这种类型实现了 < 操 ...

  5. Win10 使用笔记

    前言 记录我在使用过程的一些笔记,本文所写内容,基于笔者所使用的两款win10操作系统: win10 x64 企业版 (1607) win10 x64 专业版 (1703) Win10 五笔输入法 使 ...

  6. SQL Server数据类型int、bigint、smallint、tinyint对比表

    SQL Server数据类型int.bigint.smallint.tinyint对比表 数据类型 范围 存储 bigint -2^63 (-9,223,372,036,854,775,808) 到 ...

  7. Git Extensions 使用小结

    1.查看仓库 2.创建分支 然后会自动创建一个 Commit ,推送到远端分支即可. 3.合并分支 注意1.自动提交需要没有无法自动合并的冲突才行. 注意2.快进线指的是将别人的提交原封不动附加到自己 ...

  8. LeetCode算法题-String Compression(Java实现)

    这是悦乐书的第230次更新,第242篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第97题(顺位题号是443).给定一组字符,就地压缩它.压缩后的长度必须始终小于或等于原 ...

  9. 使用 dep 配置 golang 开发环境

    概要 golang 的包管理一直没有官方统一的解决方案,因此也产生了很多非官方的包管理工具. 之前我一直使用的 gb(https://getgb.io/) 能够很好的隔开各个 golang 工程,当时 ...

  10. March 06th, 2018 Week 10th Tuesday

    Hope for the best, but prepare for the worst. 抱最好的愿望,做最坏的打算. To hope for the best and prepare for th ...