CF1097D Makoto and a Blackboard
题目地址:CF1097D Makoto and a Blackboard
首先考虑 \(n=p^c\) ( \(p\) 为质数)的情况,显然DP:
令 \(f_{i,j}\) 为第 \(i\) 次替换后出现 \(p^j\) 的概率
边界:
\[f_{0,c}=1\]
状态转移方程:
\[f_{i,j}=\sum_{t=j}^{c} \frac{f_{i-1,t}}{t+1}\]
目标:
\[\sum_{j=0}^{c}\ f_{k,j}\ p^j\]
考虑一般情况,将 \(n\) 分解质因数:
\[n=\prod_{i=1}^{m} {p_i}^{c_i}\]
按照上述方法DP每个 \({p_i}^{c_i}\)
由于期望是积性函数,直接将所有答案乘起来即可 (我就是卡在这一步上,难受QWQ)
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int K = 10006, C = 56, P = 1000000007;
ll n, f[K][C], inv[C];
int k;
vector<pair<ll, int> > d;
void divide(ll n) {
for (ll i = 2; i <= sqrt(n); i++)
if (n % i == 0) {
int c = 0;
while (n % i == 0) {
n /= i;
++c;
}
d.push_back(make_pair(i, c));
}
if (n > 1ll) d.push_back(make_pair(n, 1));
}
ll work(ll p, int c) {
for (int i = 0; i <= k; i++)
for (int j = 0; j <= c; j++)
f[i][j] = 0;
f[0][c] = 1;
for (int i = 1; i <= k; i++)
for (int j = c; j >= 0; j--)
for (int t = j; t <= c; t++)
f[i][j] = (f[i][j] + f[i-1][t] * inv[t+1] % P) % P;
ll ans = 0, now = 1;
for (int j = 0; j <= c; j++) {
ans = (ans + f[k][j] * now % P) % P;
now = now * p % P;
}
return ans;
}
int main() {
inv[1] = 1;
for (int i = 2; i < C; i++)
inv[i] = -(P / i) * inv[P%i] % P;
cin >> n >> k;
divide(n);
ll ans = 1;
for (unsigned int i = 0; i < d.size(); i++)
ans = ans * work(d[i].first, d[i].second) % P;
cout << (ans + P) % P << endl;
return 0;
}
CF1097D Makoto and a Blackboard的更多相关文章
- CF1097D Makoto and a Blackboard 积性函数、概率期望、DP
传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217 ...
- cf1097D. Makoto and a Blackboard(期望dp)
题意 题目链接 Sol 首先考虑当\(n = p^x\),其中\(p\)是质数,显然它的因子只有\(1, p, p^2, \dots p^x\)(最多logn个) 那么可以直接dp, 设\(f[i][ ...
- CF1097D Makoto and a Blackboard(期望)
link 题目大意:给您一个数 n, 每次从n的所有约数(包含1.n)中等概率选出一个约数替换n,重复操作k次,求最后结果期望值%1e9+7. 题解:考虑暴力,我们设f(n,k)代表答案,则有f(n, ...
- CF1097D Makoto and a Blackboard(期望)
[Luogu-CF1097D] 给定 \(n,k\)一共会进行 \(k\) 次操作 , 每次操作会把 \(n\) 等概率的变成 \(n\) 的某个约数 求操作 \(k\) 次后 \(n\) 的期望是多 ...
- CF1097D Makoto and a Blackboard 质因数分解 DP
Hello 2019 D 题意: 给定一个n,每次随机把n换成它的因数,问经过k次操作,最终的结果的期望. 思路: 一个数可以表示为质数的幂次的积.所以对于这个数,我们可以分别讨论他的质因子的情况. ...
- D Makoto and a Blackboard
Makoto and a Blackboard time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- 【DP】【CF1097D】 Makoto and a Blackboard
更好的阅读体验 Description 给定一个数 \(n\),对它进行 \(k\) 次操作,每次将当前的数改为自己的因数,包括 \(1\) 和自己.写出变成所有因数的概率是相等的.求 \(k\) 次 ...
- CF1097D 【Makoto and a Blackboard】
我们考虑对于一个\(N\),他如果变成了他的约数\(x\),那又会变成一个子问题 我们定义\(F(n, k)\)为n操作k次的期望个数 那么我们有\(F(n, k) =\sum_{x|n} F(x, ...
- CodeForces - 1097D:Makoto and a Blackboard (积性)
Makoto has a big blackboard with a positive integer n written on it. He will perform the following a ...
随机推荐
- kubeadm安装Kubernetes V1.10集群详细文档
https://www.kubernetes.org.cn/3808.html?tdsourcetag=s_pcqq_aiomsg 1:服务器信息以及节点介绍 系统信息:centos1708 mini ...
- PV、UV、UIP、VV、CPC、CPM、RPM、CTR解释
PV.UV.UIP.VV.CPC.CPM.RPM.CTR 具体解释 PV:Page View,页面访问量,也就是曝光量. UV:Unique Visitor,独立访客数,同一个访问多次访问也只算1个访 ...
- docker-compose 案例
官网示例: 安装wordpress version: " services: db: image: mysql:5.7 volumes: - db_data:/var/lib/mysql r ...
- Kafka Offset相关命令总结
Kafka Offset相关命令总结 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.查询topic的offset的范围 1>.查询某个topic的offset的最小值 [ ...
- MySQL常见报错汇总
1>.ERROR 1290 (HY000): The MySQL server is running with the --secure-file-priv option so it canno ...
- angular中的服务
angular中的服务 angular中的服务相当于一个状态管理,可以将数据放在服务里面进行获取以及编辑. 服务的安装命令: ng g service count 安装好后,会在服务的ts文件中引入一 ...
- Spark源码剖析 - SparkContext的初始化(四)_Hadoop相关配置及Executor环境变量
4. Hadoop相关配置及Executor环境变量的设置 4.1 Hadoop相关配置信息 默认情况下,Spark使用HDFS作为分布式文件系统,所以需要获取Hadoop相关配置信息的代码如下: 获 ...
- mysql修改表结构语句
mysql alter 用法,修改表,字段等信息 一: 修改表信息 1.修改表名 alter table test_a rename to sys_app; 2.修改表注释 alter table ...
- API(Scanner、Random、ArrayList、String、Arrays、Math)
Scanner import java.util.Scanner; /* public int nextInt(): to get a integer from keyboard public Str ...
- MobX响应式编程库
MobX https://mobx.js.org/ https://github.com/mobxjs/mobx MobX is a battle tested library that makes ...