对于已经满足条件的(x1,y1),不满足条件的点就是(n*x1,n*y1),所以要求的就是满足点(x,y)的x,y互质,也就是gcd(x,y) == 1,然后就可以用之前多校的方法来做了

另f[i] 表示gcd为 i 的倍数的对数

g[i] 表示gcd == i 的对数

f[i] = (n/i) * (m/i)

g[i] = f[i] - g[x*i] (x>=2)

然后容斥出来的g[1]就是对数

#include<map>
#include<set>
#include<ctime>
#include<cmath>
#include<stack>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lowbit(x) (x & (-x))
#define INOPEM freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const double pi = 4.0*atan(1.0);
const int inf = 0x3f3f3f3f;
const int maxn = ;
const int maxm = ;
const int mod = 1e9+;
using namespace std; int n, m;
int T, tol;
ll f[maxn];
ll g[maxn]; void init() {
memset(f, , sizeof f);
memset(g, , sizeof g);
} int main() {
scanf("%d", &T);
while(T--) {
init();
scanf("%d%d", &n, &m);
if(n > m) swap(n, m);
for(int i=; i<=n; i++) f[i] = 1ll * (n/i) * (m/i);
for(int i=n; i>=; i--) {
g[i] = f[i];
for(int j=; i*j<=n; j++) {
g[i] -= g[i*j];
}
}
printf("%lld\n", g[]);
}
return ;
}

Visible Trees HDU - 2841(容斥)的更多相关文章

  1. C - Visible Trees HDU - 2841 -莫比乌斯函数-容斥

    C - Visible Trees HDU - 2841 思路 :被挡住的那些点(x , y)肯定是 x 与 y不互质.能够由其他坐标的倍数表示,所以就转化成了求那些点 x,y互质 也就是在 1 - ...

  2. HDU 2841 容斥 或 反演

    $n,m <= 1e5$ ,$i<=n$,$j<=m$,求$(i⊥j)$对数 /** @Date : 2017-09-26 23:01:05 * @FileName: HDU 284 ...

  3. Visible Trees HDU - 2841

    Visible Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  4. - Visible Trees HDU - 2841 容斥原理

    题意: 给你一个n*m的矩形,在1到m行,和1到n列上都有一棵树,问你站在(0,0)位置能看到多少棵树 题解: 用(x,y)表示某棵树的位置,那么只要x与y互质,那么这棵树就能被看到.不互质的话说明前 ...

  5. HDU 4135 容斥

    问a,b区间内与n互质个数,a,b<=1e15,n<=1e9 n才1e9考虑分解对因子的组合进行容斥,因为19个最小的不同素数乘积即已大于LL了,枚举状态复杂度不会很高.然后差分就好了. ...

  6. HDU 1695 容斥

    又是求gcd=k的题,稍微有点不同的是,(i,j)有偏序关系,直接分块好像会出现问题,还好数据规模很小,直接暴力求就行了. /** @Date : 2017-09-15 18:21:35 * @Fil ...

  7. HDU 4059 容斥初步练习

    #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...

  8. hdu 1220 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=1220 Cube Time Limit: 2000/1000 MS (Java/Others)    Memory ...

  9. Co-prime HDU - 4135_容斥计数

    Code: #include<cstdio> #include<cstring> #include<cmath> #include<iostream> ...

随机推荐

  1. [转帖]CentOS 6 服务器安全配置指南(通用)

    CentOS 6 服务器安全配置指南(通用) http://seanlook.com/2014/09/07/linux-security-general-settings/  发表于 2014-09- ...

  2. python爬虫之爬虫性能篇

    一.首先想到的是for循环,单线程爬取每个url,但是如果有url出现了问题,后面的url就得等,性能低. 二.我们考虑线程池的问题,下面我们定义了线程池里面最多10个任务,也就是说最多同一时间只能有 ...

  3. layer弹层基本参数初尝试

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  4. xml-dtd

    dtd用于校验XML的语法. dtd步骤: 1.看XML中有多少个元素,有几个元素,在dtd文件中写几个<!ELEMENT> 2.判断元素是简单元素还是复杂元素 -复杂元素:有子元素的元素 ...

  5. How to create DMG on macOS

    hdiutil create -srcfolder /users/test1/ -volname test1 /users/test/test1.dmg

  6. 【python练习题】程序4

    # 题目:输入某年某月某日,判断这一天是这一年的第几天? import time year = input('输入年份: \n') month = input('输入月份: \n') day = in ...

  7. Xtoken

    “我希望有一种模式,利用群体的智慧让最好的想法总能够脱颖而出”. 博弈模型 背景 本文为NEO社区理事会秘书长陶荣祺在全球创业周区块链创新与发展论坛上的主题演讲<Xtoken代观社区驱动群体智慧 ...

  8. 使用binlog,实现MySQL数据恢复

    mysql的binlog日志,用于记录数据库的增.删.改等修改操作,默认处于关闭状态.使用binlog实现数据恢复的条件为 1.binlog日志功能已开启 2.若binlog在数据库创建一段时候后开启 ...

  9. Codeforces 768B B. Code For 1

    参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6423483.html B. Code For 1 time limit per test:2 se ...

  10. POJ 2112-Optimal Milking-二分答案+二分图匹配

    此题有多种做法. 使用floyd算法预处理最短路,二分答案,对于每一个mid,如果距离比mid小就连边, 注意把每个机器分成m个点.这样跑一个最大匹配,如果都匹配上就可以减小mid值. 用的算法比较多 ...