[FJOI2016]神秘数(脑洞+可持久化)
题目描述
一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。
题解
加入我们查询的区间为l-r。
我们先查询有几个1,然后发现有k个,那么然后我们再查询1-k+1有多少数,如果大于等于k+1的话,那么1到k+1都能表出。
重复这个过程即可,最多跳log次。
代码
#include<iostream>
#include<cstdio>
#define N 100002
using namespace std;
typedef long long ll;
const int maxn=1e9;
ll tr[N*],a[N];
int L[N*],R[N*],tot,n,m,T[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
void ins(int &cnt,int pre,int l,int r,ll x){
cnt=++tot;
tr[cnt]=tr[pre]+x;L[cnt]=L[pre];R[cnt]=R[pre];
if(l==r)return;
int mid=(l+r)>>;
if(mid>=x)ins(L[cnt],L[pre],l,mid,x);
else ins(R[cnt],R[pre],mid+,r,x);
}
ll query(int cnt,int pre,int l,int r,ll x){
// cout<<cnt<<" "<<pre<<" "<<l<<" "<<r<<" "<<tr[cnt]<<" "<<tr[pre]<<endl;
if(!cnt)return ;
if(r<=x)return tr[cnt]-tr[pre];
int mid=(l+r)>>;
if(mid<x)return tr[L[cnt]]-tr[L[pre]]+query(R[cnt],R[pre],mid+,r,x);
else return query(L[cnt],L[pre],l,mid,x);
}
int main(){
n=rd();int m;
for(int i=;i<=n;++i)a[i]=rd(),ins(T[i],T[i-],,maxn,a[i]);
m=rd();int l,r;
while(m--){
l=rd();r=rd();
// cout<<"****"<<endl;
ll ans=,now=;
while(ans<=maxn){
// cout<<ans<<endl;
ans=query(T[r],T[l-],,maxn,ans);
// cout<<ans<<" "<<now<<endl;
if(ans<now)break;else now=ans+,ans=now;
}
printf("%lld\n",ans+);
}
return ;
}
[FJOI2016]神秘数(脑洞+可持久化)的更多相关文章
- (bzoj4408)[FJOI2016]神秘数(可持久化线段树)
(bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...
- 【BZOJ4408】[FJOI2016]神秘数(主席树)
[BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...
- 【LG4587】[FJOI2016]神秘数
[LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...
- BZOJ 4408 FJOI2016 神秘数 可持久化线段树
Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...
- [bzoj4408][Fjoi2016]神秘数
Description 一个可重复数字集合$S$的神秘数定义为最小的不能被$S$的子集的和表示的正整数. 例如$S={1,1,1,4,13}$, $1=1$, $2=1+1$, $3=1+1+1$, ...
- Luogu P4587 [FJOI2016]神秘数
一道好冷门的好题啊,算是对于一个小结论和数据结构的一点考验吧 首先看完题目我们发现要从这个神秘数的性质入手,我们观察or手玩可得: 如果有\(x\)个\(1\),那么\([1,x]\)都是可以表示出来 ...
- bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...
- BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...
- 洛谷 P4587 [FJOI2016]神秘数
大鸽子 llmmkk 正在补8.3号咕掉的题 时隔两个月,再看到这道题,我又是一脸懵,这种思维的培养太重要了 链接: P4587 题意: 给出 \(n\) 个点的序列,\(m\) 次询问区间神秘数. ...
随机推荐
- 07-nodejs中npm的使用
NPM是什么? 简单的说,npm就是JavaScript的包管理工具.类似Java语法中的maven,gradle,python中的pip. 安装 傻瓜式的安装. 第一步:打开https://node ...
- Vmware由于centos升级内核不可运行(C header files matching your running kernel were not found)的解决方案
C header files matching your running kernel were not found. Refer to your distribution's documentati ...
- [转帖]HPE的软件部分到底是谁的?
英国Micro Focus公司收购惠普旗下软件部门 http://www.gongkong.com/news/201710/369740.html 搞不清楚 现在ALM 到底是谁的资产了.. 据国外媒 ...
- day 7-15 表与表之间的关系
一. 前言 表与 表之间有3种对应关系,分别是: 多对一:一张表中的一个字段中的多个值对应另外一张表中的一个字段值.(多个学生,可以学习同一门课程) 多对多;一张表中的一个字段值对应另外一张表中的多个 ...
- php分割中文字符串为数组的简单例子
近日在做东西时,遇到要把中文字符进行逐字分割,试了很多方法,都不行,后来发现了一个超简单的方法: 分割字符串很简单,主要是用到函数preg_match_all.当处理含有中文的字符串时,可以用如下的方 ...
- spring boot session error
Error starting ApplicationContext. To display the conditions report re-run your application with 'de ...
- echo "" > 和 echo "" >> 的区别
在写shell脚本中,如果判断一个文件已经存在,但希望重写这个文件,一般用如下方式 echo "" > file.txt 这个表示清空文件的内容,如果使用 echo “” & ...
- Python OpenCV人脸识别案例
■环境 Python 3.6.0 Pycharm 2017.1.3 ■库.库的版本 OpenCV 3.4.1 (cp36) ■haarcascades下载 https://github.com/ope ...
- 如何在cmd中集成git
1.要在cmd中集成git,要解决在cmd中输入git命令时不提示git不是内部或外部命令: 即需要将git添加到path变量中,即将D:\Git\mingw64\bin和D:\Git\mingw64 ...
- Delphi MDI 子窗体的创建和销毁 [zhuan]
1.如果要创建一个mdi child,先看是否有这个child 存在,如果有,则用它,如果没有再创建 //该函数判断MDI 子窗体是否存在,再进行创建和显示function isInclude(for ...