题目描述

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},

1 = 1

2 = 1+1

3 = 1+1+1

4 = 4

5 = 4+1

6 = 4+1+1

7 = 4+1+1+1

8无法表示为集合S的子集的和,故集合S的神秘数为8。

现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

题解

加入我们查询的区间为l-r。

我们先查询有几个1,然后发现有k个,那么然后我们再查询1-k+1有多少数,如果大于等于k+1的话,那么1到k+1都能表出。

重复这个过程即可,最多跳log次。

代码

#include<iostream>
#include<cstdio>
#define N 100002
using namespace std;
typedef long long ll;
const int maxn=1e9;
ll tr[N*],a[N];
int L[N*],R[N*],tot,n,m,T[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
void ins(int &cnt,int pre,int l,int r,ll x){
cnt=++tot;
tr[cnt]=tr[pre]+x;L[cnt]=L[pre];R[cnt]=R[pre];
if(l==r)return;
int mid=(l+r)>>;
if(mid>=x)ins(L[cnt],L[pre],l,mid,x);
else ins(R[cnt],R[pre],mid+,r,x);
}
ll query(int cnt,int pre,int l,int r,ll x){
// cout<<cnt<<" "<<pre<<" "<<l<<" "<<r<<" "<<tr[cnt]<<" "<<tr[pre]<<endl;
if(!cnt)return ;
if(r<=x)return tr[cnt]-tr[pre];
int mid=(l+r)>>;
if(mid<x)return tr[L[cnt]]-tr[L[pre]]+query(R[cnt],R[pre],mid+,r,x);
else return query(L[cnt],L[pre],l,mid,x);
}
int main(){
n=rd();int m;
for(int i=;i<=n;++i)a[i]=rd(),ins(T[i],T[i-],,maxn,a[i]);
m=rd();int l,r;
while(m--){
l=rd();r=rd();
// cout<<"****"<<endl;
ll ans=,now=;
while(ans<=maxn){
// cout<<ans<<endl;
ans=query(T[r],T[l-],,maxn,ans);
// cout<<ans<<" "<<now<<endl;
if(ans<now)break;else now=ans+,ans=now;
}
printf("%lld\n",ans+);
}
return ;
}

[FJOI2016]神秘数(脑洞+可持久化)的更多相关文章

  1. (bzoj4408)[FJOI2016]神秘数(可持久化线段树)

    (bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...

  2. 【BZOJ4408】[FJOI2016]神秘数(主席树)

    [BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...

  3. 【LG4587】[FJOI2016]神秘数

    [LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...

  4. BZOJ 4408 FJOI2016 神秘数 可持久化线段树

    Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...

  5. [bzoj4408][Fjoi2016]神秘数

    Description 一个可重复数字集合$S$的神秘数定义为最小的不能被$S$的子集的和表示的正整数. 例如$S={1,1,1,4,13}$, $1=1$, $2=1+1$, $3=1+1+1$, ...

  6. Luogu P4587 [FJOI2016]神秘数

    一道好冷门的好题啊,算是对于一个小结论和数据结构的一点考验吧 首先看完题目我们发现要从这个神秘数的性质入手,我们观察or手玩可得: 如果有\(x\)个\(1\),那么\([1,x]\)都是可以表示出来 ...

  7. bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...

  8. BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...

  9. 洛谷 P4587 [FJOI2016]神秘数

    大鸽子 llmmkk 正在补8.3号咕掉的题 时隔两个月,再看到这道题,我又是一脸懵,这种思维的培养太重要了 链接: P4587 题意: 给出 \(n\) 个点的序列,\(m\) 次询问区间神秘数. ...

随机推荐

  1. xmanager 乱码

    xmanager连接后中文显示乱码 - 程序员CC - 博客园http://www.cnblogs.com/aomidata/p/3445075.html Xshell 为什么会出现中文乱码?-Xma ...

  2. 转:Linux下查看tomcat占用端口

    https://blog.csdn.net/liufuwu1/article/details/71123597[root@server-crm mysql]# ps -ef | grep " ...

  3. Laravel 服务容器、服务提供器、契约实例讲解

        前言 刚开始看laravel服务容器.契约.服务提供器的确生涩难懂,不单单是概念繁多,而且实际的demo很难找(找是找到了,但难用啊),最后就隔一段时间看一遍,大概个十来遍,还真给看出个门道, ...

  4. [转帖]Docker的daemon.json的作用

    Docker(十六)-Docker的daemon.json的作用 https://www.cnblogs.com/zhuochong/p/10070434.html jfrog 培训的时候 说过这个地 ...

  5. 123. 单词搜索(DFS)

    描述 给出一个二维的字母板和一个单词,寻找字母板网格中是否存在这个单词. 单词可以由按顺序的相邻单元的字母组成,其中相邻单元指的是水平或者垂直方向相邻.每个单元中的字母最多只能使用一次. 样例 给出 ...

  6. 我和我的小伙伴们都惊呆了!基于Canvas的第三方库Three.js

    What is Three.js three + js 表示运行在浏览器上的3D程序 javascript的计算能力因为google的V8引擎得到了迅猛提升 做服务器都没问题了 更别说3D了 哈哈  ...

  7. 排查 Maxwell can not find database 并且使用 MySQL binlog 解决相关问题

    目前我们在使用 Maxwell 在读线上机器的 binlog 同步我们的离线数据库. 这次错误定位上,首先线要确定问题是发生在生产者 还是队列 还是消费者.经过查看各机器上任务的运行日志,定位到了问题 ...

  8. 除了binlog2sql工具外,使用python脚本闪回数据(数据库误操作)

    利用binlog日志恢复数据库误操作数据 在人工手动进行一些数据库写操作的时候(比方说数据修改),尤其是一些不可控的批量更新或删除,通常都建议备份后操作.不过不怕万一,就怕一万,有备无患总是好的.在线 ...

  9. ASP.NET4.0所有网页指令

    ASP.NET网页指令(Page Directive)就是在网页开头的标签声明: <% Page Language="C#" %> 而指令的作用在于指定网页和用户控件编 ...

  10. js中判断数据类型的4中方法

    注意: js中数据类型有7种(number, boolean, string, null, undefined, object, Symbol(es6新增)) 原始数据类型: number, stri ...