题目描述

一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},

1 = 1

2 = 1+1

3 = 1+1+1

4 = 4

5 = 4+1

6 = 4+1+1

7 = 4+1+1+1

8无法表示为集合S的子集的和,故集合S的神秘数为8。

现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间l,r,求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。

题解

加入我们查询的区间为l-r。

我们先查询有几个1,然后发现有k个,那么然后我们再查询1-k+1有多少数,如果大于等于k+1的话,那么1到k+1都能表出。

重复这个过程即可,最多跳log次。

代码

#include<iostream>
#include<cstdio>
#define N 100002
using namespace std;
typedef long long ll;
const int maxn=1e9;
ll tr[N*],a[N];
int L[N*],R[N*],tot,n,m,T[N];
inline int rd(){
int x=;char c=getchar();bool f=;
while(!isdigit(c)){if(c=='-')f=;c=getchar();}
while(isdigit(c)){x=(x<<)+(x<<)+(c^);c=getchar();}
return f?-x:x;
}
void ins(int &cnt,int pre,int l,int r,ll x){
cnt=++tot;
tr[cnt]=tr[pre]+x;L[cnt]=L[pre];R[cnt]=R[pre];
if(l==r)return;
int mid=(l+r)>>;
if(mid>=x)ins(L[cnt],L[pre],l,mid,x);
else ins(R[cnt],R[pre],mid+,r,x);
}
ll query(int cnt,int pre,int l,int r,ll x){
// cout<<cnt<<" "<<pre<<" "<<l<<" "<<r<<" "<<tr[cnt]<<" "<<tr[pre]<<endl;
if(!cnt)return ;
if(r<=x)return tr[cnt]-tr[pre];
int mid=(l+r)>>;
if(mid<x)return tr[L[cnt]]-tr[L[pre]]+query(R[cnt],R[pre],mid+,r,x);
else return query(L[cnt],L[pre],l,mid,x);
}
int main(){
n=rd();int m;
for(int i=;i<=n;++i)a[i]=rd(),ins(T[i],T[i-],,maxn,a[i]);
m=rd();int l,r;
while(m--){
l=rd();r=rd();
// cout<<"****"<<endl;
ll ans=,now=;
while(ans<=maxn){
// cout<<ans<<endl;
ans=query(T[r],T[l-],,maxn,ans);
// cout<<ans<<" "<<now<<endl;
if(ans<now)break;else now=ans+,ans=now;
}
printf("%lld\n",ans+);
}
return ;
}

[FJOI2016]神秘数(脑洞+可持久化)的更多相关文章

  1. (bzoj4408)[FJOI2016]神秘数(可持久化线段树)

    (bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...

  2. 【BZOJ4408】[FJOI2016]神秘数(主席树)

    [BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...

  3. 【LG4587】[FJOI2016]神秘数

    [LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...

  4. BZOJ 4408 FJOI2016 神秘数 可持久化线段树

    Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1+1+14 = 45 = 4+16 ...

  5. [bzoj4408][Fjoi2016]神秘数

    Description 一个可重复数字集合$S$的神秘数定义为最小的不能被$S$的子集的和表示的正整数. 例如$S={1,1,1,4,13}$, $1=1$, $2=1+1$, $3=1+1+1$, ...

  6. Luogu P4587 [FJOI2016]神秘数

    一道好冷门的好题啊,算是对于一个小结论和数据结构的一点考验吧 首先看完题目我们发现要从这个神秘数的性质入手,我们观察or手玩可得: 如果有\(x\)个\(1\),那么\([1,x]\)都是可以表示出来 ...

  7. bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...

  8. BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...

  9. 洛谷 P4587 [FJOI2016]神秘数

    大鸽子 llmmkk 正在补8.3号咕掉的题 时隔两个月,再看到这道题,我又是一脸懵,这种思维的培养太重要了 链接: P4587 题意: 给出 \(n\) 个点的序列,\(m\) 次询问区间神秘数. ...

随机推荐

  1. zabbix使用jmx监控tomcat

    zabbix监控Tomcat/JVM实例性能(115) – 运维生存时间http://www.ttlsa.com/zabbix/zabbix-use-jmx-monitor-tomcat/ zabbi ...

  2. Mysql占用CPU过高如何优化?(转)

    原文:http://bbs.landingbj.com/t-0-241441-1.html MySQL处在高负载环境下,磁盘IO读写过多,肯定会占用很多资源,必然CP会U占用过高. 占用CPU过高,可 ...

  3. React Native之code-push的热更新(ios android)

    React Native之code-push的热更新(ios android) React Native支持大家用React Native技术开发APP,并打包生成一个APP.在动态更新方面React ...

  4. composer 自动加载 通过classmap自动架子啊

    https://github.com/brady-wang/composer github地址 composer加载自己写的类 放入一个目录下 更改composer.json "autolo ...

  5. [转帖]关于CP936

    来源: 知乎:https://www.zhihu.com/question/35609295/answer/63780022 CP936和UTF-8本身和Python是毫无关联的. CP936其实就是 ...

  6. HDU 5782 Cycle —— KMP

    题目:Cycle 链接:http://acm.hdu.edu.cn/showproblem.php?pid=5782 题意:给出两个字符串,判断两个字符串的每一个前缀是否循环相等(比如abc 和 ca ...

  7. ubuntu18.04 安装 php7.2

    sudo apt-get install software-properties-common python-software-properties sudo add-apt-repository p ...

  8. Laravel数据库操作的三种方式

    http://blog.csdn.net/zls986992484/article/details/52824962

  9. PDO连接mysql数据库加载慢

    今天在使用PDO连接mysql操作数据库的时候,发现速度特别慢,都1~2s的时间,不知道怎么回事,后来一步一步排除到new PDO 导致过慢的原因, 这个尴尬了...,调试了半天都没想到问下度娘,才知 ...

  10. LAMP 版本查看

    mysql 1 在终端下执行 mysql -V 2  mysql --help |grep Distrib 3 在mysql 里查看 select version() 4 在mysql 里查看 sta ...