【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP
题目描述
有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色。
还有\(m\)种洗牌方法,每种洗牌方法是一种置换。保证任意多次洗牌都可用这\(m\)种洗牌法中的一种代
替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。
问你本质不同的染色方法有多少种。
\(r,g,b\leq 20,m\leq 60\)
题解
对照置换群的定义,可以发现这\(m\)种置换加上恒等置换一共\(m+1\)中置换构成了一个置换群。
由burnside引理得到本质不同的方案数就是只考虑每个置换时的染色方案数的平均数。
对于每个置换,先处理出循环,一个循环里的卡牌要染上相同的颜色。因为每种颜色的卡牌有数量限制,所以要背包DP一下。
最后乘上\({(m+1)}^{-1}\)。
时间复杂度:\(O(n^3m)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
int p;
int fp(int a,int b)
{
int s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
int f[100][100][100];
int a[100];
int r,g,b;
int n;
int c[100];
void add(int &a,int b)
{
a=(a+b)%p;
}
void dp(int v)
{
int i,j,k;
for(i=r;i>=0;i--)
for(j=g;j>=0;j--)
for(k=b;k>=0;k--)
{
if(i>=v)
add(f[i][j][k],f[i-v][j][k]);
if(j>=v)
add(f[i][j][k],f[i][j-v][k]);
if(k>=v)
add(f[i][j][k],f[i][j][k-v]);
}
}
int solve()
{
memset(f,0,sizeof f);
f[0][0][0]=1;
int i;
memset(c,0,sizeof c);
for(i=1;i<=n;i++)
{
int s=0;
int j=i;
while(!c[j])
{
c[j]=1;
s++;
j=a[j];
}
dp(s);
}
return f[r][g][b];
}
int main()
{
int m;
scanf("%d%d%d%d%d",&r,&g,&b,&m,&p);
int i,j;
n=r+g+b;
int ans=0;
for(i=1;i<=m;i++)
{
for(j=1;j<=n;j++)
scanf("%d",&a[j]);
add(ans,solve());
}
m++;
for(i=1;i<=n;i++)
a[i]=i;
add(ans,solve());
ans=ans*fp(m,p-2)%p;
printf("%d\n",ans);
return 0;
}
【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP的更多相关文章
- 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp
题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...
- BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)
Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4255 Solved: 2582[Submit][Status][Discuss] Descript ...
- BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )
题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...
- [BZOJ1004][HNOI2008]Cards 群论+置换群+DP
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 首先贴几个群论相关定义和引理. 群:G是一个集合,*是定义在这个集合上的一个运算. ...
- bzoj1004 [HNOI2008]Cards Burnside 引理+背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...
- 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)
1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...
- [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)
Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...
- BZOJ1004 HNOI2008 Cards Burnside、背包
传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...
- bzoj1004: [HNOI2008]Cards(burnside引理+DP)
题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...
随机推荐
- Log4J.xml配置详解
原文地址:https://blog.csdn.net/genyizha/article/details/74502812 Appender Appender:日志输出器,配置日志的输出级别.输出位置等 ...
- ios点击输入框,界面放大解决方案
当我们编写的input宽度没有占满屏幕宽度,而且又没有申明meta,就会出现点击输入框,界面放大这个问题. 下面我直接给出解决方案: <meta name="viewport" ...
- vue图表
https://www.cnblogs.com/powertoolsteam/p/top-9-javascript-charting-libraries.html
- springboot+ELK+logback日志分析系统demo
之前写的有点乱,这篇整理了一下搭建了一个简单的ELK日志系统 借鉴此博客完成:https://blog.csdn.net/qq_22211217/article/details/80764568 设置 ...
- keras中TimeDistributed的用法
TimeDistributed这个层还是比较难理解的.事实上通过这个层我们可以实现从二维像三维的过渡,甚至通过这个层的包装,我们可以实现图像分类视频分类的转化. 考虑一批32个样本,其中每个样本是一个 ...
- python语法糖/装饰器
1.python高阶函数和嵌套函数 1.1高阶函数 def func1(x): return x**2 def func2(x): return x**3 def func(x,y): return ...
- Mysql如何快速插入100万条记录?
1.java程序拼接insert带多个value,使一次提交多个值. 2.插入数据之前先删除索引(注意主键不能删除),然后插入数据,最后重建索引 3.可以设置手动commit,用来提高效率 4.使用批 ...
- systemd取消对服务重启的限制
默认情况下,一个服务在10秒内最多允许启动5次.当超过5次后,会报如下错误: Job for xx.service failed because start of the service was at ...
- C#中as运算符
as运算符用于执行引用类型的显式类型转换.如果要转换的类型与指定的类型兼容,转换就会成功进行:如果类型不兼容,as运算符就会返回null值.如下面的代码所示,如果object引用实际上不引用strin ...
- DButils实现数据库表下划线转bean中驼峰格式
准备: QueryRunner queryRunner = new QueryRunner();//开启下划线->驼峰转换所用BeanProcessor bean = new GenerousB ...