题目描述

  有\(n\)张卡牌,要求你给这些卡牌染上RGB三种颜色,\(r\)张红色,\(g\)张绿色,\(b\)张蓝色。

  还有\(m\)种洗牌方法,每种洗牌方法是一种置换。保证任意多次洗牌都可用这\(m\)种洗牌法中的一种代

替,且对每种洗牌法,都存在一种洗牌法使得能回到原状态。

  问你本质不同的染色方法有多少种。

  \(r,g,b\leq 20,m\leq 60\)

题解

  对照置换群的定义,可以发现这\(m\)种置换加上恒等置换一共\(m+1\)中置换构成了一个置换群。

  由burnside引理得到本质不同的方案数就是只考虑每个置换时的染色方案数的平均数。

  对于每个置换,先处理出循环,一个循环里的卡牌要染上相同的颜色。因为每种颜色的卡牌有数量限制,所以要背包DP一下。

  最后乘上\({(m+1)}^{-1}\)。

  时间复杂度:\(O(n^3m)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
int p;
int fp(int a,int b)
{
int s=1;
for(;b;b>>=1,a=a*a%p)
if(b&1)
s=s*a%p;
return s;
}
int f[100][100][100];
int a[100];
int r,g,b;
int n;
int c[100];
void add(int &a,int b)
{
a=(a+b)%p;
}
void dp(int v)
{
int i,j,k;
for(i=r;i>=0;i--)
for(j=g;j>=0;j--)
for(k=b;k>=0;k--)
{
if(i>=v)
add(f[i][j][k],f[i-v][j][k]);
if(j>=v)
add(f[i][j][k],f[i][j-v][k]);
if(k>=v)
add(f[i][j][k],f[i][j][k-v]);
}
}
int solve()
{
memset(f,0,sizeof f);
f[0][0][0]=1;
int i;
memset(c,0,sizeof c);
for(i=1;i<=n;i++)
{
int s=0;
int j=i;
while(!c[j])
{
c[j]=1;
s++;
j=a[j];
}
dp(s);
}
return f[r][g][b];
}
int main()
{
int m;
scanf("%d%d%d%d%d",&r,&g,&b,&m,&p);
int i,j;
n=r+g+b;
int ans=0;
for(i=1;i<=m;i++)
{
for(j=1;j<=n;j++)
scanf("%d",&a[j]);
add(ans,solve());
}
m++;
for(i=1;i<=n;i++)
a[i]=i;
add(ans,solve());
ans=ans*fp(m,p-2)%p;
printf("%d\n",ans);
return 0;
}

【BZOJ1004】【HNOI2008】Cards 群论 置换 burnside引理 背包DP的更多相关文章

  1. 【bzoj1004】[HNOI2008]Cards Burnside引理+背包dp

    题目描述 用三种颜色染一个长度为 $n=Sr+Sb+Sg$ 序列,要求三种颜色分别有 $Sr,Sb,Sg$ 个.给出 $m$ 个置换,保证这 $m$ 个置换和置换 ${1,2,3,...,n\choo ...

  2. BZOJ1004: [HNOI2008]Cards(Burnside引理 背包dp)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4255  Solved: 2582[Submit][Status][Discuss] Descript ...

  3. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  4. [BZOJ1004][HNOI2008]Cards 群论+置换群+DP

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 首先贴几个群论相关定义和引理. 群:G是一个集合,*是定义在这个集合上的一个运算. ...

  5. bzoj1004 [HNOI2008]Cards Burnside 引理+背包

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=1004 题解 直接 Burnside 引理就可以了. 要计算不动点的个数,那么对于一个长度为 \ ...

  6. 【BZOJ 1004】 1004: [HNOI2008]Cards (置换、burnside引理)

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很 ...

  7. [BZOJ1004] [HNOI2008]Cards解题报告(Burnside引理)

    Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有多少种染色方案,Sun很快就给出了答案.进一步,小春要求染出Sr张红 ...

  8. BZOJ1004 HNOI2008 Cards Burnside、背包

    传送门 在没做这道题之前天真的我以为\(Polya\)可以完全替代\(Burnside\) 考虑\(Burnside\)引理,它要求的是对于置换群中的每一种置换的不动点的数量. 既然是不动点,那么对于 ...

  9. bzoj1004: [HNOI2008]Cards(burnside引理+DP)

    题目大意:3种颜色,每种染si个,有m个置换,求所有本质不同的染色方案数. 置换群的burnside引理,还有个Pólya过几天再看看... burnside引理:有m个置换k种颜色,所有本质不同的染 ...

随机推荐

  1. python四:函数练习--小白博客

    为什么要有函数?函数式编程定义一次,多出调用函数在一定程度上可以理解为变量函数的内存地址加上()就是调用函数本身也可以当做参数去传参 不用函数:组织结构不清晰代码的重复性 def test():#te ...

  2. hibernate多对多 一对多 及简单入门 主键生成策略

    Hibernate简单使用 入门 通过hibernate的 一对多 多对多轻松看懂hibernate配置 (不使用注解) hibernate对jdbc访问数据库的代码进行轻量级封装,简化重复代码 减少 ...

  3. mysql索引及优化

    索引; 2.索引入门对于任何DBMS,索引都是进行优化的最主要的因素.对于少量的数据,没有合适的索引影响不是很大,但是,当随着数据量的增加,性能会急剧下降.如果对多列进行索引(组合索引),列的顺序非常 ...

  4. 本地项目托管到github上

    一,步骤 1.在github上新建一个仓库 2.进入我的项目目录, git init //初始化本地仓库 3.git add . //把修改的代码提交到暂存区 4.git status 该命令会把你本 ...

  5. 实现数据结构与算法需要掌握的C语言

    我使用C语言并不频繁,一般都是用来实现数据结构与算法,因为面向过程的编程方式容易理解算法的原理,但是呢,如果很长时间没写算法,那么就意味着C语言的某些语法就生疏了,但是总有那么一些,在写算法的时候,特 ...

  6. CodeIgniter框架通过URL向控制器传递参数

    通过URL传递参数的方法是GET,在CodeIgnter框架中,通过URL有两种方式向控制器传递参数: 一种是键值对的形式. 一种是类似于文件路径的形式,这个时候,不是以键值对的形式了,我们只传递值. ...

  7. 【翻译】asp.net core2.1认证和授权解密

    asp.net core2.1认证和授权解密 本篇文章翻译自:https://digitalmccullough.com/posts/aspnetcore-auth-system-demystifie ...

  8. Spring中RedirectAttributes的用法

    RedirectAttributes 是Spring mvc 3.1版本之后出来的一个功能,专门用于重定向之后还能带参数跳转的的工具类.他有两种带参的方式: 第一种: redirectAttribut ...

  9. 工程下CmakeLists.txt

    2.工程下Cmake 本小节的任务是让上一小结的程序更像一个工程: 为工程添加一个子目录 src,用来放置工程源代码 : 添加一个子目录doc,用来放置这个工程的文档 hello.txt: 在工程目录 ...

  10. Setting property 'source' to 'org.eclipse.jst.jee.server:hczm' did not find a matching property