HDU4651 Partition 【多项式求逆】
题目分析:
这题的做法是一个叫做五边形数定理的东西,我不会。
我们不难发现第$n$项的答案其实是:
$$\prod_{i=1}^{\infty}\frac{1}{1-x^i}$$
我们要对底下的东西求逆,可以尝试打表找一下这个的规律,就会发现底下那个函数,系数要么是$1$,要么是$-1$,要么是$0$。
而且这个函数是稀疏的,前$100000$项只有$515$项非$0$。可以打出表后暴力求逆。
所以这道题我们有了一个$O(515*n)$的做法。
代码:
#include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int mod = ; int num = ;
int a[] ={,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,};
int b[] = {,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,}; int n,iv[maxn],res[maxn]; void work(){
iv[] = ;for(int i=;i<num;i++) res[a[i]]=,res[b[i]] = mod-;
for(int i=;i<=n;i++){
if(res[i] != ){
iv[i] = mod-res[i];
for(int j=;j<num;j++){
if(a[j] + i > n) break;
res[a[j]+i] += iv[i];
if(res[a[j]+i] >= mod) res[a[j]+i]-=mod;
}
for(int j=;j<num;j++){
if(b[j] + i > n) break;
res[b[j]+i] -= iv[i];
if(res[b[j]+i] < ) res[b[j]+i] += mod;
}
}
}
} int main(){
n = ;
work();
int T; scanf("%d",&T);
while(T--){
scanf("%d",&n);
printf("%d\n",iv[n]);
}
return ;
}
HDU4651 Partition 【多项式求逆】的更多相关文章
- hdu 5730 Shell Necklace [分治fft | 多项式求逆]
hdu 5730 Shell Necklace 题意:求递推式\(f_n = \sum_{i=1}^n a_i f_{n-i}\),模313 多么优秀的模板题 可以用分治fft,也可以多项式求逆 分治 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- NTT+多项式求逆+多项式开方(BZOJ3625)
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...
- Re.多项式求逆
前言 emmm暂无 多项式求逆目的 顾名思义 就是求出一个多项式的摸xn时的逆 给定一个多项式F(x),请求出一个多项式G(x),满足F(x)∗G(x)≡1(modxn),系数对998244353取模 ...
- BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)
题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...
- 洛谷P4841 城市规划(生成函数 多项式求逆)
题意 链接 Sol Orz yyb 一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到... 正解是先设\(g(n)\)表示\(n\)个 ...
- LOJ2527 HAOI2018 染色 容斥、生成函数、多项式求逆
传送门 调了1h竟然是因为1004535809写成了998244353 "恰好有\(K\)种颜色出现了\(S\)次"的限制似乎并不容易达到,考虑容斥计算. 令\(c_j\)表示强制 ...
- 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆
题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...
- 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂
题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...
- 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...
随机推荐
- (1)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- 什么是微服务架构,.netCore微服务选型
开发工具:VS2017 .Net Core 2.1 什么是微服务?单体结构: 缺点: 1)只能采用同一种技术,很难用不同的语言或者语言不同版本开发不同模块: 2)系统耦合性强,一旦其中一个模块有问题, ...
- jdk1.8之线程中断
在Core Java中有这样一句话:"没有任何语言方面的需求要求一个被中断的程序应该终止.中断一个线程只是为了引起该线程的注意,被中断线程可以决定如何应对中断 " 线程中断不会使线 ...
- .NET Core 中正确使用 HttpClient 的姿势
为了更方便在服务端调用 HTTP 请求,微软在 .NET Framework 4.x 的时候引入了 HttpClient.但 HttpClient 有很多严重问题,一直饱受诟病,比如 InfoQ 的这 ...
- 关于NETCORE中使用特性Serializable找不到引用的解决方法
升级到netcore后,serializable特性不在命名空间System下了,需要nuget依赖包System.Runtime.Serialization.Formatters
- hdu 5584 LCM Walk
没用运用好式子...想想其实很简单,首先应该分析,由于每次加一个LCM是大于等于其中任何一个数的,那么我LCM加在哪个数上面,那个数就是会变成大的,这样想,我们就知道,每个(x,y)对应就一种情况. ...
- Linux 典型应用之WebServer 安装和配置
Apache的基本操作 安装 yum install httpd 启动 service httpd start 在浏览器中输入以下Ip 发现无法访问 http://192.168.1.109/ 输入 ...
- bat 文本合并
小工具—把多个TXT文件合成一个 - TTXS_RS的博客 - CSDN博客https://blog.csdn.net/TTXS_RS/article/details/79743384 把所有文本文件 ...
- Highgo 瀚高数据库的简单搭建以及处理参数等.
1. 获取一个瀚高数据库的安装文件 我这边只获取了 瀚高的 2.0.4 的windows x64 版本的. 来源: 同事从供应商那里获取的. 2. windows上面简单安装 很简单 exe 一路ne ...
- Oracle数值函数
--数值函数 --四舍五入 ) from dual ) from dual --数字截取 ) from dual --取模 ,) from dual
- APP-SERVICE-SDK:setStorageSync:fail;at page/near/pages/shops/shops page lifeCycleMethod onUnload function
APP-SERVICE-SDK:setStorageSync:fail;at page/near/pages/shops/shops page lifeCycleMethod onUnload fun ...