现象:

WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/weights] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/weights/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/beta] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/beta/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/gamma] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/gamma/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/weights] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/weights/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/beta] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/beta/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/gamma] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/gamma/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/weights] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/weights/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/beta] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/beta/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma] is not available in checkpoint

这个报的warning是你要的变量在 checkpoint里面找不到!!!!!!!!!!!

那checkpoint里面是什么?????????????那就去看咯:

然后就吧checkpoint的信息打印出来:

import tensorflow as tf
from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file latest_ckp = tf.train.latest_checkpoint('./') # checkpoint 所在的路径是当前文件夹(./),如果是其他,请改过来
print_tensors_in_checkpoint_file(latest_ckp, all_tensors=True, tensor_name='')
然后发现: tensor_name:  FeatureExtractor/resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/beta
[-1.2371869 -1.3236059 -1.2312554 ... -1.3017322 -1.2117504 -1.4911506]
tensor_name:  FeatureExtractor/resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/gamma
[1.4568403 1.4048293 1.0624585 ... 1.1037463 1.0324904 1.0967498]
tensor_name:  FeatureExtractor/resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean
[-0.08689928  0.00798311 -0.02823892 ... -0.04347016 -0.07710622
 -0.04719209]
tensor_name:  FeatureExtractor/resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance
[0.00452107 0.00487971 0.00305854 ... 0.00261809 0.00344088 0.00306313]
tensor_name:  FeatureExtractor/resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/weights
[[[[ 1.2295754e-03 -9.4967345e-03 -6.6470391e-05 ... -9.7579239e-03
     1.1851139e-02 -1.0630138e-02]
   [-4.5038795e-04 -3.9205588e-03 -6.4933673e-03 ...  9.1390898e-03
    -1.1232623e-02 -9.8358802e-03]
   [ 1.3918030e-02 -7.1829297e-03  3.0942420e-03 ... -6.6203251e-03 原来是少了FeatureExtractor,这时候就去找restore var 的code
var_name = (
re.split('^' + self._extract_features_scope + '/',
var_name)[-1])
_extract_features_scope就是:FeatureExtractor
发现
他把这个给干掉了,所以:
问题是,tensorflow object detection 在model zoom新下载的模型命名方式改变了,如果使用旧的代码加载新的模型就会出现这个问题,解决方案是research/object_detection/meta_architectures/ssd_meta_arch.py
var_name = (
re.split('^' + self._extract_features_scope + '/',
var_name)[-1])
改为:
var_name = (
re.split('^' + '/',
var_name)[-1])
同样的其他模型也是这样。

但是,后面还是出现:

WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/weights/Momentum] is not available in checkpoint

仔细看,你会发现,这只是Momentum造成的,是优化器中的参数,不是模型参数,Momentum是动量的意思,优化器使用这个是为了

避免收敛到局部极值。這個不影響的。如果不想報錯可以:

if fine_tune_checkpoint_type == 'classification':
var_name = (
re.split('^' + '/',
var_name)[-1])
# var_name = (
# re.split('^' + self._extract_features_scope + '/',
# var_name)[-1])
if 'Momentum' in var_name:
continue
variables_to_restore[var_name] = variable

加一個:

if 'Momentum' in var_name:
continue

如果是Moment 變量就不加載。

不过,如果对这套代码不了解的,建议update最新的代码。

tensorflow,object,detection,在model zoom,新下载的模型,WARNING:root:Variable [resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/gamma] is not available in checkpoint的更多相关文章

  1. TensorFlow Object Detection API中的Faster R-CNN /SSD模型参数调整

    关于TensorFlow Object Detection API配置,可以参考之前的文章https://becominghuman.ai/tensorflow-object-detection-ap ...

  2. [Tensorflow] Object Detection API - predict through your exclusive model

    开始预测 一.训练结果 From: Testing Custom Object Detector - TensorFlow Object Detection API Tutorial p.6 训练结果 ...

  3. TensorFlow object detection API应用

    前一篇讲述了TensorFlow object detection API的安装与配置,现在我们尝试用这个API搭建自己的目标检测模型. 一.准备数据集 本篇旨在人脸识别,在百度图片上下载了120张张 ...

  4. TensorFlow object detection API应用--配置

    目标检测在图形识别的基础上有了更进一步的应用,但是代码也更加繁琐,TensorFlow专门为此开设了一个object detection API,接下来看看怎么使用它. object detectio ...

  5. 对于谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程

    本教程针对Windows10实现谷歌近期公布的TensorFlow Object Detection API视频物体识别系统,其他平台也可借鉴. 本教程将网络上相关资料筛选整合(文末附上参考资料链接) ...

  6. Tensorflow object detection API(1)---环境搭建与测试

    参考: https://blog.csdn.net/dy_guox/article/details/79081499 https://blog.csdn.net/u010103202/article/ ...

  7. 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)

    前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...

  8. 使用Tensorflow Object Detection进行训练和推理

    整体流程(以PASCAL VOC为例) 1.下载PASCAL VOC2012数据集,并将数据集转为tfrecord格式 2.选择并下载预训练模型 3.配置训练文件configuration(所有的训练 ...

  9. TensorFlow Object Detection API(Windows下训练)

    本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃 最近事情比较多,前面坑挖的有点久,今天终于有时间总结一下,顺便把Windows下训练跑通.Li ...

随机推荐

  1. 关于FIFO异步复位的问题

    关于FIFO异步复位的问题 FIFO异步复位的宽度,需要保证至少3个较慢时钟的时钟周期长度. 怎样对一个脉冲加宽呢? `timescale 1ns / 1ps //////////////////// ...

  2. 使用iframe方式获得svg中的DOM元素,和svg 的 contentDocument 返回 null

    碰到这个的相关问题,百度找了好久,找到了个解决方法,原址 https://segmentfault.com/q/1010000009001758 var iframe = document.getEl ...

  3. bzoj5107: [CodePlus2017]找爸爸

    Description 小A最近一直在找自己的爸爸,用什么办法呢,就是DNA比对.小A有一套自己的DNA序列比较方法,其最终目标是最 大化两个DNA序列的相似程度,具体步骤如下:1.给出两个DNA序列 ...

  4. 分布式job-任务调度(一)

    什么是任务调度: 任务调度:在单位时间内,去调用某个方法或者执行某段代码 java实现方式: 方法一(使用线程实现): public static void ThreadTskScheduling() ...

  5. [转]SQL中的case when then else end用法

      Case具有两种格式.简单Case函数和Case搜索函数. --简单Case函数 CASE sex WHEN '1' THEN '男' WHEN '2' THEN '女' ELSE '其他' EN ...

  6. 根据导出的查询结果拼接字符串,生成sql语句并保存到txt文件中

    import os os.chdir("C:/") path = os.getcwd() print(path) f = open("sql.csv") # p ...

  7. [UE4]Spline使用注意事项

    一.如果在Character中使用Spline,则使用Add Spline Mesh Componet的时候,要注意设置Transform.Mobility为Movable 二.使用Predict P ...

  8. FuzzScanner 信息收集小工具

    前言: 该工具集成了各种大牛的工具,比如子域名发现,目录扫描,nmap端口扫描,c段地址查询,端口指纹,以及waf查询 00X1: 安装不推荐git安装,首先直接githup脱下来:git clone ...

  9. How to compile tensorflow on CentOS

    Tensorflow is a very effective machine learning library implemented by C++, we can use tensorflow wi ...

  10. java.lang.Boolean 类源码解析

    Boolean源码比较简单. public final class Boolean implements java.io.Serializable, Comparable<Boolean> ...