现象:

WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_mean] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/moving_variance] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/weights] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/weights/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/beta] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/beta/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/gamma] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/gamma/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_mean] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/BatchNorm/moving_variance] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/weights] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/weights/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/beta] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/beta/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/gamma] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/gamma/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_mean] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/BatchNorm/moving_variance] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/weights] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv3/weights/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/beta] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/beta/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/shortcut/BatchNorm/gamma] is not available in checkpoint

这个报的warning是你要的变量在 checkpoint里面找不到!!!!!!!!!!!

那checkpoint里面是什么?????????????那就去看咯:

然后就吧checkpoint的信息打印出来:

import tensorflow as tf
from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file latest_ckp = tf.train.latest_checkpoint('./') # checkpoint 所在的路径是当前文件夹(./),如果是其他,请改过来
print_tensors_in_checkpoint_file(latest_ckp, all_tensors=True, tensor_name='')
然后发现: tensor_name:  FeatureExtractor/resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/beta
[-1.2371869 -1.3236059 -1.2312554 ... -1.3017322 -1.2117504 -1.4911506]
tensor_name:  FeatureExtractor/resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/gamma
[1.4568403 1.4048293 1.0624585 ... 1.1037463 1.0324904 1.0967498]
tensor_name:  FeatureExtractor/resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_mean
[-0.08689928  0.00798311 -0.02823892 ... -0.04347016 -0.07710622
 -0.04719209]
tensor_name:  FeatureExtractor/resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/BatchNorm/moving_variance
[0.00452107 0.00487971 0.00305854 ... 0.00261809 0.00344088 0.00306313]
tensor_name:  FeatureExtractor/resnet_v1_50/block4/unit_2/bottleneck_v1/conv3/weights
[[[[ 1.2295754e-03 -9.4967345e-03 -6.6470391e-05 ... -9.7579239e-03
     1.1851139e-02 -1.0630138e-02]
   [-4.5038795e-04 -3.9205588e-03 -6.4933673e-03 ...  9.1390898e-03
    -1.1232623e-02 -9.8358802e-03]
   [ 1.3918030e-02 -7.1829297e-03  3.0942420e-03 ... -6.6203251e-03 原来是少了FeatureExtractor,这时候就去找restore var 的code
var_name = (
re.split('^' + self._extract_features_scope + '/',
var_name)[-1])
_extract_features_scope就是:FeatureExtractor
发现
他把这个给干掉了,所以:
问题是,tensorflow object detection 在model zoom新下载的模型命名方式改变了,如果使用旧的代码加载新的模型就会出现这个问题,解决方案是research/object_detection/meta_architectures/ssd_meta_arch.py
var_name = (
re.split('^' + self._extract_features_scope + '/',
var_name)[-1])
改为:
var_name = (
re.split('^' + '/',
var_name)[-1])
同样的其他模型也是这样。

但是,后面还是出现:

WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/gamma/Momentum] is not available in checkpoint
WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/weights/Momentum] is not available in checkpoint

仔细看,你会发现,这只是Momentum造成的,是优化器中的参数,不是模型参数,Momentum是动量的意思,优化器使用这个是为了

避免收敛到局部极值。這個不影響的。如果不想報錯可以:

if fine_tune_checkpoint_type == 'classification':
var_name = (
re.split('^' + '/',
var_name)[-1])
# var_name = (
# re.split('^' + self._extract_features_scope + '/',
# var_name)[-1])
if 'Momentum' in var_name:
continue
variables_to_restore[var_name] = variable

加一個:

if 'Momentum' in var_name:
continue

如果是Moment 變量就不加載。

不过,如果对这套代码不了解的,建议update最新的代码。

tensorflow,object,detection,在model zoom,新下载的模型,WARNING:root:Variable [resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/gamma] is not available in checkpoint的更多相关文章

  1. TensorFlow Object Detection API中的Faster R-CNN /SSD模型参数调整

    关于TensorFlow Object Detection API配置,可以参考之前的文章https://becominghuman.ai/tensorflow-object-detection-ap ...

  2. [Tensorflow] Object Detection API - predict through your exclusive model

    开始预测 一.训练结果 From: Testing Custom Object Detector - TensorFlow Object Detection API Tutorial p.6 训练结果 ...

  3. TensorFlow object detection API应用

    前一篇讲述了TensorFlow object detection API的安装与配置,现在我们尝试用这个API搭建自己的目标检测模型. 一.准备数据集 本篇旨在人脸识别,在百度图片上下载了120张张 ...

  4. TensorFlow object detection API应用--配置

    目标检测在图形识别的基础上有了更进一步的应用,但是代码也更加繁琐,TensorFlow专门为此开设了一个object detection API,接下来看看怎么使用它. object detectio ...

  5. 对于谷歌开源的TensorFlow Object Detection API视频物体识别系统实现教程

    本教程针对Windows10实现谷歌近期公布的TensorFlow Object Detection API视频物体识别系统,其他平台也可借鉴. 本教程将网络上相关资料筛选整合(文末附上参考资料链接) ...

  6. Tensorflow object detection API(1)---环境搭建与测试

    参考: https://blog.csdn.net/dy_guox/article/details/79081499 https://blog.csdn.net/u010103202/article/ ...

  7. 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(二)

    前言 已完成数据预处理工作,具体参照: 基于TensorFlow Object Detection API进行迁移学习训练自己的人脸检测模型(一) 设置配置文件 新建目录face_faster_rcn ...

  8. 使用Tensorflow Object Detection进行训练和推理

    整体流程(以PASCAL VOC为例) 1.下载PASCAL VOC2012数据集,并将数据集转为tfrecord格式 2.选择并下载预训练模型 3.配置训练文件configuration(所有的训练 ...

  9. TensorFlow Object Detection API(Windows下训练)

    本文为作者原创,转载请注明出处(http://www.cnblogs.com/mar-q/)by 负赑屃 最近事情比较多,前面坑挖的有点久,今天终于有时间总结一下,顺便把Windows下训练跑通.Li ...

随机推荐

  1. python之路——24

    复习 1.面向对象编程 思想:角色的抽象,创建类,实例化,操作实例2.面向对象的关键字 1.类的静态属性,存储在类的命名空间 2.类名.方法(对象),对象.方法 3.对象可以使用静态变量:类不可以使用 ...

  2. mysql之工具的使用总结(mac版本)

    13.mysql Mac终端操作 12.MySql在Mac上的安装与配置详解: 11.mac下安装mysql5.7.18,连接出现Access denied for user 'root'@'loca ...

  3. 通过 phpmyadmin getshell

    通过 phpmyadmin  getshell general_log默认为关闭的,root权限开启后,general_log_file会保存所有的查询语句 可以开启general_log,然后设置g ...

  4. Resharper快捷键汇总

    编辑Ctrl + Space 代码完成 Ctrl + Shift + Space代码完成Ctrl + Alt + Space代码完成Ctrl + P 显示参数信息Alt + Insert 生成构造函数 ...

  5. Ubuntu系统配置

    0.基本配置 0.1初始设置 (1)开户root账号并重启系统: 打开gedit /usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf 添加greeter- ...

  6. cesium 拾取模型表面的坐标

    scene = viewer.scene;var handler = new Cesium.ScreenSpaceEventHandler(scene.canvas);handler.setInput ...

  7. vue富文本编辑器

    基于webpack和vue 一.npm 安装 vue-quill-editor 二.在main.js中引入 import VueQuillEditor from 'vue-quill-editor'/ ...

  8. 利用JAVA API函数实现数据的压缩与解压缩

      综述 许多信息资料都或多或少的包含一些多余的数据.通常会导致在客户端与服务器之间,应用程序与计算机之间极大的数据传输量.最常见的解决数据存储和信息传送的方法是安装额外的存储设备和扩展现有的通讯能力 ...

  9. charles抓不到APP内的某些接口-解决部分汇总

    首先,让我哭会,我竟然自己解决了问题.网上查的解决办法都试过了就是不管用,也问过前辈,就是没招. 果然,自立自强,勇者不息. Top1 问题:charles抓不到接口? 现象:web端的网络请求OK, ...

  10. redis 安装和配置

    准备条件:1>确保所安装的环境能够访问网络,2>环境中拥有gcc\g++.make.tar等工具3>以root身份登录安装过程:1>输入命令:wget http://downl ...