This article introduces how to derive the representation formula used in BEM from Green's identity.

Interior and exterior representation formulas

Let $u$ be a harmonic function in the free space $\mathbb{R}^d$: \begin{equation} \label{eq:harmonic-function} \triangle u = 0 \quad (x \in \mathbb{R}^d). \end{equation} Let $\gamma(x, y)$ be the fundamental solution for the free space such that \begin{equation} \label{eq:laplace-equation} -\triangle_x \gamma(x, y) = \delta(x - y) \quad (x, y \in \mathbb{R}^d). \end{equation} It has the following formulation: \begin{equation} \label{eq:fundamental-solution} \gamma(x, y) = \begin{cases} -\frac{1}{2\pi}\ln\lvert x - y \rvert & (d = 2) \\ \frac{\lvert x - y \rvert^{2-d}}{(d-2)\omega_d} & (d > 2) \end{cases}, \end{equation} where $\omega_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$, $x$ is the field point and $y$ is the source point. Let $\psi$ and $\varphi$ be two functions having 2nd order derivatives in a bounded domain $\Omega$ in $\mathbb{R}^d$ with its boundary $\Gamma = \pdiff\Omega$. Let $\vect{F} = \psi\nabla\varphi - \varphi\nabla\psi$ and apply the Gauss divergence theorem, we have the famous Green's 2nd identity as below: \begin{equation} \label{eq:green-2nd-identity} \int_{\Omega} \left( \psi\triangle\varphi - \varphi\triangle\psi \right) \intd V = \int_{\Gamma} \left( \psi \frac{\pdiff\varphi}{\pdiff \normvect} - \varphi \frac{\pdiff \psi}{\pdiff \normvect} \right) \intd S, \end{equation} where $\normvect$ is the unit outward normal vector with respect to domain $\Omega$, which points from interior to exterior. By replacing $\psi$ with $\gamma(x,y)$ and $\varphi$ with $u(x)$, and performing integration and differentiation with respect to the variable $x$, we have \begin{equation} \label{eq:green-2nd-identity-with-fundamental-solution} \int_{\Omega} \left( \gamma(x,y)\triangle_x u(x) - u(x)\triangle_x\gamma(x,y) \right) \intd V(x) = \int_{\Gamma} \left( \gamma(x,y) \frac{\pdiff u(x)}{\pdiff \normvect(x)} - u(x) \frac{\pdiff \gamma(x,y)}{\pdiff \normvect(x)} \right) \intd S(x). \end{equation} After substituting \eqref{eq:harmonic-function} and \eqref{eq:laplace-equation}, we have $$ u(y) = \int_{\Gamma} \gamma(x,y) \frac{\pdiff u(x)}{\pdiff \normvect(x)} \intd S(x) - \int_{\Gamma} u(x) \frac{\pdiff \gamma(x,y)}{\pdiff \normvect(x)} \intd S(x) \quad (y \in \Int(\Omega)). $$ where $\Int(\Omega)$ is the interior of $\Omega$. Due to the symmetric property of the fundamental solution \begin{align} \label{eq:fundamental-solution-symmetry} \gamma(x,y) &= \gamma(y,x) \\ \frac{\pdiff\gamma(y,x)}{\pdiff \normvect(y)} = K^{*}(y,x) &= K(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect(y)}, \end{align} after swappping the variables $x$ and $y$, we have the representation formula for the interior $\Int(\Omega)$ of $\Omega$ as below: \begin{equation} \label{eq:interior-representation-formula} u(x) = \int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) - \int_{\Gamma} K(x,y) u(y) \intd S(y) \quad (x \in \Int(\Omega)), \end{equation} where $\psi(y) = \frac{\pdiff u(y)}{\pdiff \normvect(y)}$ and $K(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect(y)}$. The first term in the above equation is the single layer potential, while the second term is the double layer potential.

Remark It can be seen that the interior representation formula in equation \eqref{eq:interior-representation-formula} has the same formulation as that derived from the direct method.

For the exterior $\Omega' = \mathbb{R}^d \backslash \overline{\Omega}$ of $\Omega$, a representation formula with the same formulation can be obtained as long as we assume that when $\abs{x} \rightarrow \infty$, both $\gamma(x,y)$ and $K(x,y)$ approach to zero, so that the integration on infinite boundary has no contribution. Therefore, the representation formula for the exterior of $\Omega$ is \begin{equation} \label{eq:exterior-representation-formula} u(x) = \int_{\Gamma} \gamma(x,y) \psi'(y) \intd S(y) - \int_{\Gamma} K'(x,y) u(y) \intd S(y) \quad (x \in \Int(\Omega')). \end{equation} Here $\psi'(y) = \frac{\pdiff u(y)}{\pdiff \normvect'(y)}$ and $K'(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect'(y)}$, where $\normvect'$ is the unit outward normal vector with respect to the domain $\Omega'$, which has opposite direction compared to $\normvect$.

Representation formula at the boundary $\Gamma$

It is well known that the single layer potential in equation \eqref{eq:interior-representation-formula} or \eqref{eq:exterior-representation-formula} is continuous across the boundary $\Gamma$, while the double layer potential has a jump, which is governed by the following theorem.

Theorem (Boundary limit of double layer potential) Let $\phi \in C(\Gamma)$ and $u$ be the double layer potential $$ u(x) = \int_{\Gamma} K(x,y) \phi(y) \intd S(y) \quad (x \in \mathbb{R}^d \backslash \Gamma) $$ with a charge density $\phi$. This equation has the following two cases:

  1. interior representation formula: $$ u(x) = \int_{\Gamma} K(x,y) \phi(y) \intd S(y) \quad (x \in \Omega) $$
  2. exterior representation formula: $$ u(x) = \int_{\Gamma} K'(x,y) \phi(y) \intd S(y) \quad (x \in \Omega') $$

Then the restrictions of $u$ to $\Omega$ and $\Omega'$ both have continuous extensions to $\overline{\Omega}$ and $\overline{\Omega'}$ respectively. Let $t \in \mathbb{R}$ and $\normvect$ be the unit outward normal vector of $\Omega$, the function $$ u_t(x) = u(x + t \normvect(x)) \quad (x \in \Gamma) $$ converges uniformly to $u_-$ when $t \rightarrow 0^-$ and to $u_+$ when $t \rightarrow 0^+$, where \begin{equation} \begin{aligned} u_{-}(x) &= -\frac{1}{2} \phi(x) + T_K\phi = -\frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \\ u_{+}(x) &= \frac{1}{2} \phi(x) + T_K\phi = \frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}

Representation formula outside the domain $\Omega$

For the interior representation formula \eqref{eq:interior-representation-formula}, when the variable $x$ is outside the domain $\Omega$, $u$ evaluates to zero. This is because according to equation \eqref{eq:green-2nd-identity-with-fundamental-solution}, before swapping $x$ and $y$, when the variable $y$ is outside $\Omega$, the Dirac function $\Delta_x \gamma(x,y) = -\delta(x - y)$ evaluates to zero. Similarly, for the exterior representation formula \eqref{eq:exterior-representation-formula}, when the variable $x$ is outside the domain $\Omega'$, $u$ also evaluates to zero.

Summary of representation formulas' behavior in $\mathbb{R}^d$

By summarizing previous results, we can conclude that for the interior representation formula \eqref{eq:interior-representation-formula} \begin{equation} \label{eq:interior-representation-formula-behavior} \int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) - \int_{\Gamma} K(x,y) u(y) \intd S(y) = cu(x) \end{equation} where $$ c = \begin{cases} 1 & x \in \Int(\Omega) \\ \frac{1}{2} & x \in \Gamma \\ 0 & x \in \Int(\Omega') \end{cases} $$ Similarly for the exterior representation formula \eqref{eq:exterior-representation-formula} we have \begin{equation} \label{eq:exterior-representation-formula-behavior} \int_{\Gamma} \gamma(x,y) \psi'(y) \intd S(y) - \int_{\Gamma} K'(x,y) u(y) \intd S(y) = c'u(x) \end{equation} where $$ c' = \begin{cases} 1 & x \in \Int(\Omega') \\ \frac{1}{2} & x \in \Gamma \\ 0 & x \in \Int(\Omega) \end{cases} $$ If we also use the normal vector $\normvect$ with respect to $\Omega$ in \eqref{eq:interior-representation-formula-behavior}, we have \begin{equation} \label{eq:interior-representation-formula-with-normvect} -\int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) + \int_{\Gamma} K(x,y) u(y) \intd S(y) = c'u(x). \end{equation} It should be noted that although the left hand sides of \eqref{eq:interior-representation-formula-behavior} and \eqref{eq:interior-representation-formula-with-normvect} have the same form with opposite signs, they do not cancel with other because the limiting values of the double layer charge density $u$ used in the integral are approached to $\Gamma$ from interior and exterior respectively. Therefore, although the single layer potential is continuous across the boundary $\Gamma$, the double layer potential has a jump. Then we have the following jump behavior for the double layer potential at $\Gamma$ \begin{equation} \label{eq:double-layer-potential-jump} \int_{\Gamma} K(x,y) u(y)\big\vert_{\Omega'} \intd S(y) - \int_{\Gamma} K(x,y) u(y)\big\vert_{\Omega} \intd S(y) = u(x) \quad (x \in \Gamma), \end{equation} which is consistent with $u_+ - u_- = \phi$ derived from the theorem for the boundary limit of double layer potential.

Derive representation formula from Green’s identity的更多相关文章

  1. Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记

    The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...

  2. Introduction to boundary integral equations in BEM

    Boundary element method (BEM) is an effective tool compared to finite element method (FEM) for resol ...

  3. R语言基础

    一.扩展包的基本操作语句R安装好之后,默认自带了"stats" "graphics"  "grDevices" "utils&qu ...

  4. Adjoint operators $T_K$ and $T_{K^{*}}$ in BEM

    In our last article, we introduced four integral operators in the boundary integral equations in BEM ...

  5. Circles and Pi

    Circles and Pi Introduction id: intro-1 For as long as human beings exist, we have looked to the sky ...

  6. 【ASP.NET Identity系列教程(一)】ASP.NET Identity入门

    注:本文是[ASP.NET Identity系列教程]的第一篇.本系列教程详细.完整.深入地介绍了微软的ASP.NET Identity技术,描述了如何运用ASP.NET Identity实现应用程序 ...

  7. ASP.NET Identity 一 (转载)

    来源:http://www.cnblogs.com/r01cn/p/5194257.html 注:本文是[ASP.NET Identity系列教程]的第一篇.本系列教程详细.完整.深入地介绍了微软的A ...

  8. ASP.NET Identity系列教程-2【Identity入门】

    https://www.cnblogs.com/r01cn/p/5177708.html13 Identity入门 Identity is a new API from Microsoft to ma ...

  9. 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》

    论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...

随机推荐

  1. MFC不可不会

    这些可能会很抽象,你既然学MFC,给你几个不可少的技术点 1.Dynamic Creation2.Runtime Type Imformation3.Persistence4.Message Mapp ...

  2. Debian下undefined reference to ‘pthread_create’问题解决

    今天在写线程测试程序(pthread_create)时出现如下问题, 明明在头文件中包含了<pthread.h>,但是仍然提示找不到函数 pthread_create 和 pthread_ ...

  3. 持续集成之⑤:jenkins结合脚本实现代码自动化部署及一键回滚至上一版本

    持续集成之⑤:jenkins结合脚本实现代码自动化部署及一键回滚至上一版本 一:本文通过jenkins调用shell脚本的的方式完成从Git服务器获取代码.打包.部署到web服务器.将web服务器从负 ...

  4. python-面向对象之继承

    一.继承介绍 继承是一种新建类的方式,新建的类称之为子类或者派生类,被继承的类称为父类/基类/超类 python中继承的特点: 1.子类可以遗传/重用父类的属性 2.子类可以有多个父类 3.Pytho ...

  5. JS实现图片放大查看

    示例:https://wumaozheng.com/static-pages/image-magnifier.html <!DOCTYPE html> <html> <h ...

  6. Centos 7.3下 Linux For SQL Server安装及配置介绍

    Centos 7.3下 Linux For SQL Server安装及配置介绍 高文龙关注13人评论2828人阅读2017-03-05 21:46:21 Centos 7.3下Linux For SQ ...

  7. 为 Confluence 6 分发包设置一个邮件会话

    最简单设置 Confluence 电子邮件发服务器的方否认就是通过 Confluence 的管理员控制台进行设置.请参考 Configuring a Server for Outgoing Mail ...

  8. Swift Write to file 到电脑桌面

    (arr as NSArray).write(toFile: "Users/你的用户名/Desktop/mian.plist", atomically: true)

  9. yolov3 安装训练

    https://blog.csdn.net/helloworld1213800/article/details/79749359 https://blog.csdn.net/lilai619/arti ...

  10. MobileNet V2

    https://zhuanlan.zhihu.com/p/33075914 http://blog.csdn.net/u011995719/article/details/79135818 https ...