This article introduces how to derive the representation formula used in BEM from Green's identity.

Interior and exterior representation formulas

Let $u$ be a harmonic function in the free space $\mathbb{R}^d$: \begin{equation} \label{eq:harmonic-function} \triangle u = 0 \quad (x \in \mathbb{R}^d). \end{equation} Let $\gamma(x, y)$ be the fundamental solution for the free space such that \begin{equation} \label{eq:laplace-equation} -\triangle_x \gamma(x, y) = \delta(x - y) \quad (x, y \in \mathbb{R}^d). \end{equation} It has the following formulation: \begin{equation} \label{eq:fundamental-solution} \gamma(x, y) = \begin{cases} -\frac{1}{2\pi}\ln\lvert x - y \rvert & (d = 2) \\ \frac{\lvert x - y \rvert^{2-d}}{(d-2)\omega_d} & (d > 2) \end{cases}, \end{equation} where $\omega_d = \frac{2\pi^{d/2}}{\Gamma(d/2)}$, $x$ is the field point and $y$ is the source point. Let $\psi$ and $\varphi$ be two functions having 2nd order derivatives in a bounded domain $\Omega$ in $\mathbb{R}^d$ with its boundary $\Gamma = \pdiff\Omega$. Let $\vect{F} = \psi\nabla\varphi - \varphi\nabla\psi$ and apply the Gauss divergence theorem, we have the famous Green's 2nd identity as below: \begin{equation} \label{eq:green-2nd-identity} \int_{\Omega} \left( \psi\triangle\varphi - \varphi\triangle\psi \right) \intd V = \int_{\Gamma} \left( \psi \frac{\pdiff\varphi}{\pdiff \normvect} - \varphi \frac{\pdiff \psi}{\pdiff \normvect} \right) \intd S, \end{equation} where $\normvect$ is the unit outward normal vector with respect to domain $\Omega$, which points from interior to exterior. By replacing $\psi$ with $\gamma(x,y)$ and $\varphi$ with $u(x)$, and performing integration and differentiation with respect to the variable $x$, we have \begin{equation} \label{eq:green-2nd-identity-with-fundamental-solution} \int_{\Omega} \left( \gamma(x,y)\triangle_x u(x) - u(x)\triangle_x\gamma(x,y) \right) \intd V(x) = \int_{\Gamma} \left( \gamma(x,y) \frac{\pdiff u(x)}{\pdiff \normvect(x)} - u(x) \frac{\pdiff \gamma(x,y)}{\pdiff \normvect(x)} \right) \intd S(x). \end{equation} After substituting \eqref{eq:harmonic-function} and \eqref{eq:laplace-equation}, we have $$ u(y) = \int_{\Gamma} \gamma(x,y) \frac{\pdiff u(x)}{\pdiff \normvect(x)} \intd S(x) - \int_{\Gamma} u(x) \frac{\pdiff \gamma(x,y)}{\pdiff \normvect(x)} \intd S(x) \quad (y \in \Int(\Omega)). $$ where $\Int(\Omega)$ is the interior of $\Omega$. Due to the symmetric property of the fundamental solution \begin{align} \label{eq:fundamental-solution-symmetry} \gamma(x,y) &= \gamma(y,x) \\ \frac{\pdiff\gamma(y,x)}{\pdiff \normvect(y)} = K^{*}(y,x) &= K(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect(y)}, \end{align} after swappping the variables $x$ and $y$, we have the representation formula for the interior $\Int(\Omega)$ of $\Omega$ as below: \begin{equation} \label{eq:interior-representation-formula} u(x) = \int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) - \int_{\Gamma} K(x,y) u(y) \intd S(y) \quad (x \in \Int(\Omega)), \end{equation} where $\psi(y) = \frac{\pdiff u(y)}{\pdiff \normvect(y)}$ and $K(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect(y)}$. The first term in the above equation is the single layer potential, while the second term is the double layer potential.

Remark It can be seen that the interior representation formula in equation \eqref{eq:interior-representation-formula} has the same formulation as that derived from the direct method.

For the exterior $\Omega' = \mathbb{R}^d \backslash \overline{\Omega}$ of $\Omega$, a representation formula with the same formulation can be obtained as long as we assume that when $\abs{x} \rightarrow \infty$, both $\gamma(x,y)$ and $K(x,y)$ approach to zero, so that the integration on infinite boundary has no contribution. Therefore, the representation formula for the exterior of $\Omega$ is \begin{equation} \label{eq:exterior-representation-formula} u(x) = \int_{\Gamma} \gamma(x,y) \psi'(y) \intd S(y) - \int_{\Gamma} K'(x,y) u(y) \intd S(y) \quad (x \in \Int(\Omega')). \end{equation} Here $\psi'(y) = \frac{\pdiff u(y)}{\pdiff \normvect'(y)}$ and $K'(x,y) = \frac{\pdiff\gamma(x,y)}{\pdiff\normvect'(y)}$, where $\normvect'$ is the unit outward normal vector with respect to the domain $\Omega'$, which has opposite direction compared to $\normvect$.

Representation formula at the boundary $\Gamma$

It is well known that the single layer potential in equation \eqref{eq:interior-representation-formula} or \eqref{eq:exterior-representation-formula} is continuous across the boundary $\Gamma$, while the double layer potential has a jump, which is governed by the following theorem.

Theorem (Boundary limit of double layer potential) Let $\phi \in C(\Gamma)$ and $u$ be the double layer potential $$ u(x) = \int_{\Gamma} K(x,y) \phi(y) \intd S(y) \quad (x \in \mathbb{R}^d \backslash \Gamma) $$ with a charge density $\phi$. This equation has the following two cases:

  1. interior representation formula: $$ u(x) = \int_{\Gamma} K(x,y) \phi(y) \intd S(y) \quad (x \in \Omega) $$
  2. exterior representation formula: $$ u(x) = \int_{\Gamma} K'(x,y) \phi(y) \intd S(y) \quad (x \in \Omega') $$

Then the restrictions of $u$ to $\Omega$ and $\Omega'$ both have continuous extensions to $\overline{\Omega}$ and $\overline{\Omega'}$ respectively. Let $t \in \mathbb{R}$ and $\normvect$ be the unit outward normal vector of $\Omega$, the function $$ u_t(x) = u(x + t \normvect(x)) \quad (x \in \Gamma) $$ converges uniformly to $u_-$ when $t \rightarrow 0^-$ and to $u_+$ when $t \rightarrow 0^+$, where \begin{equation} \begin{aligned} u_{-}(x) &= -\frac{1}{2} \phi(x) + T_K\phi = -\frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \\ u_{+}(x) &= \frac{1}{2} \phi(x) + T_K\phi = \frac{1}{2} \phi(x) + \int_{\Gamma} K(x, y) \phi(y) \intd o(y) \end{aligned} \quad (x \in \Gamma). \end{equation}

Representation formula outside the domain $\Omega$

For the interior representation formula \eqref{eq:interior-representation-formula}, when the variable $x$ is outside the domain $\Omega$, $u$ evaluates to zero. This is because according to equation \eqref{eq:green-2nd-identity-with-fundamental-solution}, before swapping $x$ and $y$, when the variable $y$ is outside $\Omega$, the Dirac function $\Delta_x \gamma(x,y) = -\delta(x - y)$ evaluates to zero. Similarly, for the exterior representation formula \eqref{eq:exterior-representation-formula}, when the variable $x$ is outside the domain $\Omega'$, $u$ also evaluates to zero.

Summary of representation formulas' behavior in $\mathbb{R}^d$

By summarizing previous results, we can conclude that for the interior representation formula \eqref{eq:interior-representation-formula} \begin{equation} \label{eq:interior-representation-formula-behavior} \int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) - \int_{\Gamma} K(x,y) u(y) \intd S(y) = cu(x) \end{equation} where $$ c = \begin{cases} 1 & x \in \Int(\Omega) \\ \frac{1}{2} & x \in \Gamma \\ 0 & x \in \Int(\Omega') \end{cases} $$ Similarly for the exterior representation formula \eqref{eq:exterior-representation-formula} we have \begin{equation} \label{eq:exterior-representation-formula-behavior} \int_{\Gamma} \gamma(x,y) \psi'(y) \intd S(y) - \int_{\Gamma} K'(x,y) u(y) \intd S(y) = c'u(x) \end{equation} where $$ c' = \begin{cases} 1 & x \in \Int(\Omega') \\ \frac{1}{2} & x \in \Gamma \\ 0 & x \in \Int(\Omega) \end{cases} $$ If we also use the normal vector $\normvect$ with respect to $\Omega$ in \eqref{eq:interior-representation-formula-behavior}, we have \begin{equation} \label{eq:interior-representation-formula-with-normvect} -\int_{\Gamma} \gamma(x,y) \psi(y) \intd S(y) + \int_{\Gamma} K(x,y) u(y) \intd S(y) = c'u(x). \end{equation} It should be noted that although the left hand sides of \eqref{eq:interior-representation-formula-behavior} and \eqref{eq:interior-representation-formula-with-normvect} have the same form with opposite signs, they do not cancel with other because the limiting values of the double layer charge density $u$ used in the integral are approached to $\Gamma$ from interior and exterior respectively. Therefore, although the single layer potential is continuous across the boundary $\Gamma$, the double layer potential has a jump. Then we have the following jump behavior for the double layer potential at $\Gamma$ \begin{equation} \label{eq:double-layer-potential-jump} \int_{\Gamma} K(x,y) u(y)\big\vert_{\Omega'} \intd S(y) - \int_{\Gamma} K(x,y) u(y)\big\vert_{\Omega} \intd S(y) = u(x) \quad (x \in \Gamma), \end{equation} which is consistent with $u_+ - u_- = \phi$ derived from the theorem for the boundary limit of double layer potential.

Derive representation formula from Green’s identity的更多相关文章

  1. Discrete.Differential.Geometry-An.Applied.Introduction(sig2013) 笔记

    The author has a course on web: http://brickisland.net/DDGSpring2016/ It has more reading assignment ...

  2. Introduction to boundary integral equations in BEM

    Boundary element method (BEM) is an effective tool compared to finite element method (FEM) for resol ...

  3. R语言基础

    一.扩展包的基本操作语句R安装好之后,默认自带了"stats" "graphics"  "grDevices" "utils&qu ...

  4. Adjoint operators $T_K$ and $T_{K^{*}}$ in BEM

    In our last article, we introduced four integral operators in the boundary integral equations in BEM ...

  5. Circles and Pi

    Circles and Pi Introduction id: intro-1 For as long as human beings exist, we have looked to the sky ...

  6. 【ASP.NET Identity系列教程(一)】ASP.NET Identity入门

    注:本文是[ASP.NET Identity系列教程]的第一篇.本系列教程详细.完整.深入地介绍了微软的ASP.NET Identity技术,描述了如何运用ASP.NET Identity实现应用程序 ...

  7. ASP.NET Identity 一 (转载)

    来源:http://www.cnblogs.com/r01cn/p/5194257.html 注:本文是[ASP.NET Identity系列教程]的第一篇.本系列教程详细.完整.深入地介绍了微软的A ...

  8. ASP.NET Identity系列教程-2【Identity入门】

    https://www.cnblogs.com/r01cn/p/5177708.html13 Identity入门 Identity is a new API from Microsoft to ma ...

  9. 论文解读GALA《Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning》

    论文信息 Title:<Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learn ...

随机推荐

  1. 阿里云主机Nginx下配置NodeJS、Express和Forever

    https://cnodejs.org/topic/5059ce39fd37ea6b2f07e1a3 AngularJS中文社区即运行在阿里云主机上,本站使用Nginx引擎,为了AngularJS,我 ...

  2. Vue -cli 入门 --项目搭建(一)

    一. 安装node.js环境. 在node.js官网下载稳定版本(https://nodejs.org/en/) 下载完成后点击安装,安装过程很简单,一直next即可,安装完成会自动添加node及np ...

  3. Mysql 数据库增删改查

    数据插入 语法:INSERT INTO Table_name(field1,field2……fieldN) values(value1,vlaue2,…valueN) 单行插入用户类型 INSERT ...

  4. 【原创】大数据基础之Benchmark(4)TPC-DS测试结果(hive/hive on spark/spark sql/impala/presto)

    1 测试集群 内存:256GCPU:32Core (Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz)Disk(系统盘):300GDisk(数据盘):1.5T*1 2 ...

  5. 解决FTPClient上传文件为空,显示0字节

    JAVA使用FTPClient上传文件时总是为空,而使用FileZilla客户端时却不会. 后来查了下资料,FTP服务器有被动模式和主动模式.(具体查另外资料) 在JAVA中将FTPClient设置为 ...

  6. JavaScript 输入小数点(event.key或event.code)

    1. 概述 1.1 说明 在开发过程中,有时候需要仅输入数字与小数,故记录下使用过的功能,以便后期使用. 1.2 key 定义:按下按键时返回的标识符,按键标识符是表示键盘按钮的字符串(如1,2,a等 ...

  7. 41)django-admin

    一:介绍 通过django admin可以快速生成后台管理功能. 二:设置 工程同名下settings.py 1)在INSTALLED_APPS中增加django.contrib.admin 2)在I ...

  8. es6 super关键字

    rhttp://es6.ruanyifeng.com/#docs/class-extends super关键字,既可以当作函数使用,也可以当作对象使用.这俩种的使用是不一样的 第一种:函数使用 代表父 ...

  9. 【转】nvidia-smi 命令解读

    nvidia-smi是linux下用来查看GPU使用情况的命令.具体的参数信息详见 原文:http://blog.csdn.net/sallyxyl1993/article/details/62220 ...

  10. GZip使用

    class Program { static void Main(string[] args) { //Trace.Listeners.Clear(); //Trace.Listeners.Add(n ...