题目链接:http://lightoj.com/volume_showproblem.php?problem=1054

题意:给你两个数n和m, 求n^m的所有因子和,结果对1000000007求余;(n和m在int范围内)

 和求因子个数有一定的关系,一个数 n 可以表示成 n = p1^a1 * p2^a2 * p3^a3 * ... pk^ak,(其中pi是n的素因子)

那么n的因子和就是 (p1^0+p1^1+p1^2+...+p1^a1)*(p2^0+p2^1+p2^2+...+p2^a2)*...*(pk^0+pk^1+...+pk^ak);

至于为什么可以把这些拆开来想就好了;所以对于每一项我们要求等比数列的和,还有就是除法求余问题运用公式 a/b%mod = a*b^(mod-2);

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
typedef long long LL;
#define N 100005
using namespace std;
const double eps = 1e-;
const LL mod = ; int f[N], p[N], k = ;
void Prime()
{
for(int i=; i<N; i++)
{
if(!f[i]) p[k++] = i;
for(int j=i; j<N; j+=i)
f[j] = ;
}
} LL Pow(LL a, LL b)/// Calculate: a^b%mod;
{
LL ans = ;
while(b)
{
if(b&) ans = ans*a%mod;
a = a*a%mod;
b >>= ;
}
return ans;
}
///a/b%mod = a*b^(mod-2)%mod;
LL Sn(LL q, LL n)/// Calculate: (q^n-1)/(q-1)%mod;
{
LL ans = Pow(q, n);
ans = (ans-) * Pow(q-, mod-) % mod;
return (ans+mod)%mod;///因为上面出现了-1所以可能变成负数;
} int main()
{
Prime(); int T, t = ; LL n, m; scanf("%d", &T); while(T--)
{
scanf("%lld %lld", &n, &m); LL ans = ; for(int i=; i<k && (LL)p[i]*p[i]<=n; i++)
{
if(n%p[i])continue;
LL cnt = ; while(n%p[i] == )
{
cnt ++;
n /= p[i];
} cnt = cnt*m+; LL ret = Sn(p[i], cnt); ans = ans*ret%mod;
}
if(n>)
ans = ans*Sn(n, m+)%mod; printf("Case %d: %lld\n", t++, ans);
}
return ;
}

LightOj1054 - Efficient Pseudo Code ( 求n的m次方的因子和 )的更多相关文章

  1. 1054 - Efficient Pseudo Code

    1054 - Efficient Pseudo Code    PDF (English) Statistics Forum Time Limit: 1 second(s) Memory Limit: ...

  2. Lightoj 1054 - Efficient Pseudo Code

    题目连接: http://www.lightoj.com/volume_showproblem.php?problem=1054 题目大意: 给出n,m,问n^m的所有因子之和是多少? 解题思路: 补 ...

  3. 44. log(n)求a的n次方[power(a,n)]

    [题目] 实现函数double Power(double base, int exponent),求base的exponent次方,不需要考虑溢出. [分析] 这是一道看起来很简单的问题,很容易写出如 ...

  4. [LeetCode] Pow(x, n) 求x的n次方

    Implement pow(x, n). 这道题让我们求x的n次方,如果我们只是简单的用个for循环让x乘以自己n次的话,未免也把LeetCode上的想的太简单了,一句话形容图样图森破啊.OJ因超时无 ...

  5. POJ 1845 Sumdiv (求某个数的所有正因子的和)

    题意: 求A^B的所有正因子的和,最后模9901的结果. 思路: 若对一个数n进行素数分解,n=p1^a1*p2^a2*p3^a3*...*pk^ak那么n的所有正因子之和sum=(1+p1+...+ ...

  6. C语言求x的y次方,自定义函数,自己的算法

    我是一名高二中学生,初中时接触电脑,非常酷爱电脑技术,自己百度学习了有两年多了,编程语言也零零散散的学习了一点,想在大学学习计算机专业,所以现在准备系统的学习C语言,并在博客中与大家分享我学习中的心得 ...

  7. 50 Pow(x, n)(求x的n次方Medium)

    题目意思:x为double,n为int,求x的n次方 思路分析:直接求,注意临界条件 class Solution { public: double myPow(double x, int n) { ...

  8. [华为机试练习题]50.求M的N次方的最后三位

    题目 描写叙述: 正整数M 的N次方有可能是一个很大的数字,我们仅仅求该数字的最后三位 例1: 比方输入5和3 ,5的3次方为125.则输出为125 例2: 比方输入2和10 2的10次方为1024 ...

  9. Zoj 3529 A Game Between Alice and Bob 数论+博弈Nim 快速求数中有多少个素数因子

    本题涉及博弈论中的Nim游戏博弈. Nim游戏博弈详解链接: http://www.cnblogs.com/exponent/articles/2141477.html 本题解题报告详解链接: htt ...

随机推荐

  1. TYVJ P1069 cowtour 看不懂题意

    描述 农民John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,农民John就有多个牧场了. Joh ...

  2. ubuntu下Vim配色方案Solarized的配置

    系统:ubuntu 12.04 LTS vim版本:7.4 ---------------------------------------------------------------------- ...

  3. jsp页面中的代码执行加载顺序介绍

    1. java是在服务器端运行的代码,jsp在服务器的servlet里运行,而javascript和html都是在浏览器端运行的代码.所以加载执行顺序是是java>jsp>js. 2. j ...

  4. List 中对象属性排序

    有几个方法可以实现:让 Student 实现Comparable接口,或是实例化一 个比较器, 现在用 Comparator 比较器实例来做一个:ComparableTest.java import  ...

  5. ASP.NET中Url重写后,打不开真正的Html页面

    不对IIS配置.html的映射,IIS站点目录下.html页面都能显示.当配置了.html的映射 IIS站点目录下真实存在的.html页面无法显示,错误信息:“页面无法显示”解决方法:1.首先照旧在网 ...

  6. python 面向对象的三大特征之 继承

    #继承 #object 基类,是python定义的所有类的父类 #经典类:不继承object的类称作经典类 #新式类:继承object的类称作新式类 #python 3.x统一为新式类 #经典类是类对 ...

  7. 命令行安装KVM

    查看libvirtd的状态: [root@super67 ~]# /etc/init.d/libvirtd status libvirtd (pid  2503) is running... 安装vn ...

  8. LINQ Count/Sum/Min/Max/Avg

    参考:http://www.cnblogs.com/peida/archive/2008/08/11/1263384.html Count/Sum/Min/Max/Avg用于统计数据,比如统计一些数据 ...

  9. ZZULIOJ 1726 迷宫(BFS+小坑)

    1726: 迷宫 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 394  Solved: 64 SubmitStatusWeb Board Descr ...

  10. virtual box ubuntu卡在开机光标

    创建虚拟机的时候选择之前保存的虚拟机盘vdi文件,打开的时候卡在光标.原来是因为虚拟机是64位的,但是新建的时候只有32位的ubuntu可以选择就选择的32位. 解决办法: 在bios设置里,打开cp ...