Subgradient Algorithm
Subgradient是一种可以优化不可微的凸函数的方法.
首先回顾凸函数的定义:
$f(y) \geq f(x) + \nabla f(x)^T(y-x), all \hspace{2 pt} x, y$
凸函数的subgradient的定义为满足以下条件的$g\in \mathcal{R}^n$
$f(y) \geq f(x) + g^T(y-x), all \hspace{2 pt} y$
subgradient具有以下特性:
- 永远存在
- 如果$f$在$x$处可微, 那么$g=\nabla f(x)$
- 对于非凸函数也有类似的定义, 但是非凸函数的subgradient并不需要存在
几个例子:
例1. $f: \mathcal{R} \to \mathcal{R}, f(x) = |x|$

对于$x\neq 0, g=sign(x)$
对于$x=0, g$是$[-1, 1]$中的任一元素
例2. $f: \mathcal{R}^n \to \mathcal{R}, f(x) = \|x\|$

对于$x\neq 0, g=\frac{x}{\|x\|}$
对于$x=0, g$是${z: \|z\|\geq1}$中的任一元素
例3. $f: \mathcal{R}^n \to \mathcal{R}, f(x) = \|x\|_1$

对于$x\neq 0, g_i=sign(x_i)$
对于$x=0, g$是$[-1, 1]$中的任一元素
Subdifferential
凸函数$f$在某一点$x$的所有subgradient称为在该点的subdifferential.
subdifferential的特性:
- $\partial f(x)$是凸的(即使对于非凸函数$f$)
- 非空(低于非凸函数$f$可能是空的)
- 如果$f$在$x$是可微的, 则$\partial f(x)={\nabla f(x)}$
- 如果$\partial f(x)={g}$, 那么f是科委的, 并且$\nabla f(x)=g$
优化条件
对于凸函数$f$,
$f(x^*) = \min_{x \in \mathcal{R}^n} \iff 0 \in \partial f(x^*)$
亦即, $x$是$f$的最小点当且仅当$0$是$f$在$x^*$的subgradient
因为如果$g=0$, 则对于所有的$y$: $f(y) \geq f(x^*) + o^T(y-x^*)=f(x^*)$
Soft-thresholding
考虑如下的lasso问题
$\min_x \frac{1}{2}\|y-Ax\|^2 + \lambda\|x\|_1$, 其中$\lambda \geq 0$
简化一下上述问题, 令$A=I$:
$\min_x \frac{1}{2}\|y-x\|^2 + \lambda\|x\|_1$
上式的subgradient为:
$g=x-y+\lambda s$
其中
令$g=0$, 可以得到$x^*=S_{\lambda}(y)$:
$S_{\lambda}(y)= \begin{cases}y_i-\lambda & if y_i > \lambda \\ 0& if -\lambda\leq y_i \leq \lambda \\ y_i + \lambda & if y_i < -\lambda \end{cases}$
Subgradient method
对于凸函数(不一定可微)$f: \mathcal{R}^n \to \mathcal{R}$, 在优化时将梯度替换为subgradient既是subgradient method:
$x^{(k)}=x^{(k-1)} - t_k \cdot g^{(k-1)}, k=1,2,3,...$
其中$g^{(k-1)}$是$f$在$x^{(k-1)}$的任意subgradient
subgradient method不一定是一个descent method, 所以需要取所有迭代中最小的那个(而不是最后一个)
$f(x_{best}^{(k)})=\min_{i=1,...,k}f(x^{(i)})$
参考文献
[1]. Subgradient method. Geoff Gordon, Ryan Tibshirani
226 total views, 1 views today
Subgradient Algorithm的更多相关文章
- Pegasos: Primal Estimated sub-GrAdient Solver for SVM
Abstract We describe and analyze a simple and effective iterative algorithm for solving the optimiza ...
- 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...
- PE Checksum Algorithm的较简实现
这篇BLOG是我很早以前写的,因为现在搬移到CNBLOGS了,经过整理后重新发出来. 工作之前的几年一直都在搞计算机安全/病毒相关的东西(纯学习,不作恶),其中PE文件格式是必须知识.有些PE文件,比 ...
- [异常解决] windows用SSH和linux同步文件&linux开启SSH&ssh client 报 algorithm negotiation failed的解决方法之一
1.安装.配置与启动 SSH分客户端openssh-client和openssh-server 如果你只是想登陆别的机器的SSH只需要安装openssh-client(ubuntu有默认安装,如果没有 ...
- [Algorithm] 使用SimHash进行海量文本去重
在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(L ...
- Backtracking algorithm: rat in maze
Sept. 10, 2015 Study again the back tracking algorithm using recursive solution, rat in maze, a clas ...
- [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...
- [Algorithm] 群体智能优化算法之粒子群优化算法
同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...
- [Evolutionary Algorithm] 进化算法简介
进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”.进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编 ...
随机推荐
- javascript和C#比较
C#和javascript有很多相似的地方,比如: 序列化 C#序列化 首先需要引用 using System.Web.Script.Serialization;//System.Web.Extens ...
- [ACM_数学] Taxi Fare [新旧出租车费差 水 分段函数]
Description Last September, Hangzhou raised the taxi fares. The original flag-down fare in Hangzhou ...
- [JS4] 最简单JS框架
<html> <head> <title></title> <SCRIPT TYPE="text/JavaScript"> ...
- 说不尽的MVVM(2) – MVVM初体验
知识预备 阅读本文,我假定你已经具备以下知识: C#.WPF基础知识 了解Lambda表达式和TPL 对事件驱动模型的了解 知道ICommand接口 发生了什么 某程序员接到一个需求,编写一个媒体渲染 ...
- 在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’;输出这个数组中的所有元素。
//在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’:输出这个数组中的所有元素. char [][]y=new char [10][10 ...
- Oracle的sqlnet.ora与password文件试验
先看有没有sqlnet.ora [oracle@localhost ~]$ cd $ORACLE_HOME[oracle@localhost dbhome_1]$ cd network[oracle@ ...
- phpmyadmin导入sql数据的纠结
今天准备往phpstudy的mysql导入数据,超过2M,提示" 没有接收到要导入的数据.可能是文件名没有提交,也可能是文件大小超出 PHP 限制.参见 FAQ 1.16. " 折 ...
- ELK——安装 logstash 2.2.0、elasticsearch 2.2.0 和 Kibana 3.0
本文内容 Elasticsearch logstash Kibana 参考资料 本文介绍安装 logstash 2.2.0 和 elasticsearch 2.2.0,操作系统环境版本是 CentOS ...
- C#人爱学不学9[C#5.0异步实例+WPF自己的MVVM Async应用 1/12]
文章摘要: 1. 通过简单DEMO.让读者理解Task和Task<T> 学习过程中,掌握async和await 2. 理解同步和异步的执行 3. Task.Factory.Start ...
- Activemq消息持久化
官方文档: http://activemq.apache.org/persistence.html ActiveMq持久化相关配置:/usr/local/apache-activemq-5.11.1/ ...