Subgradient是一种可以优化不可微的凸函数的方法.

首先回顾凸函数的定义:

$f(y) \geq f(x) + \nabla f(x)^T(y-x), all \hspace{2 pt} x, y$

凸函数的subgradient的定义为满足以下条件的$g\in \mathcal{R}^n$

$f(y) \geq f(x) + g^T(y-x), all \hspace{2 pt} y$

subgradient具有以下特性:

  • 永远存在
  • 如果$f$在$x$处可微, 那么$g=\nabla f(x)$
  • 对于非凸函数也有类似的定义, 但是非凸函数的subgradient并不需要存在

几个例子:

例1. $f: \mathcal{R} \to \mathcal{R}, f(x) = |x|$

对于$x\neq 0, g=sign(x)$

对于$x=0, g$是$[-1, 1]$中的任一元素

例2. $f: \mathcal{R}^n \to \mathcal{R}, f(x) = \|x\|$

对于$x\neq 0, g=\frac{x}{\|x\|}$

对于$x=0, g$是${z: \|z\|\geq1}$中的任一元素

例3. $f: \mathcal{R}^n \to \mathcal{R}, f(x) = \|x\|_1$

对于$x\neq 0, g_i=sign(x_i)$

对于$x=0, g$是$[-1, 1]$中的任一元素

Subdifferential

凸函数$f$在某一点$x$的所有subgradient称为在该点的subdifferential.

subdifferential的特性:

  • $\partial f(x)$是凸的(即使对于非凸函数$f$)
  • 非空(低于非凸函数$f$可能是空的)
  • 如果$f$在$x$是可微的, 则$\partial f(x)={\nabla f(x)}$
  • 如果$\partial f(x)={g}$, 那么f是科委的, 并且$\nabla f(x)=g$

优化条件

对于凸函数$f$,

$f(x^*) = \min_{x \in \mathcal{R}^n} \iff 0 \in \partial f(x^*)$

亦即, $x$是$f$的最小点当且仅当$0$是$f$在$x^*$的subgradient

因为如果$g=0$, 则对于所有的$y$: $f(y) \geq f(x^*) + o^T(y-x^*)=f(x^*)$

Soft-thresholding

考虑如下的lasso问题

$\min_x \frac{1}{2}\|y-Ax\|^2 + \lambda\|x\|_1$, 其中$\lambda \geq 0$

简化一下上述问题, 令$A=I$:

$\min_x \frac{1}{2}\|y-x\|^2 + \lambda\|x\|_1$

上式的subgradient为:

$g=x-y+\lambda s$

其中

令$g=0$, 可以得到$x^*=S_{\lambda}(y)$:

$S_{\lambda}(y)= \begin{cases}y_i-\lambda & if y_i > \lambda \\ 0& if -\lambda\leq y_i \leq \lambda \\ y_i + \lambda & if y_i < -\lambda \end{cases}$

Subgradient method

对于凸函数(不一定可微)$f: \mathcal{R}^n \to \mathcal{R}$, 在优化时将梯度替换为subgradient既是subgradient method:

$x^{(k)}=x^{(k-1)} - t_k \cdot g^{(k-1)}, k=1,2,3,...$

其中$g^{(k-1)}$是$f$在$x^{(k-1)}$的任意subgradient

subgradient method不一定是一个descent method, 所以需要取所有迭代中最小的那个(而不是最后一个)

$f(x_{best}^{(k)})=\min_{i=1,...,k}f(x^{(i)})$

参考文献

[1]. Subgradient method. Geoff Gordon, Ryan Tibshirani

226 total views, 1 views today

Subgradient Algorithm的更多相关文章

  1. Pegasos: Primal Estimated sub-GrAdient Solver for SVM

    Abstract We describe and analyze a simple and effective iterative algorithm for solving the optimiza ...

  2. 挑子学习笔记:两步聚类算法(TwoStep Cluster Algorithm)——改进的BIRCH算法

    转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/twostep_cluster_algorithm.html 两步聚类算法是在SPSS Modeler中使用的 ...

  3. PE Checksum Algorithm的较简实现

    这篇BLOG是我很早以前写的,因为现在搬移到CNBLOGS了,经过整理后重新发出来. 工作之前的几年一直都在搞计算机安全/病毒相关的东西(纯学习,不作恶),其中PE文件格式是必须知识.有些PE文件,比 ...

  4. [异常解决] windows用SSH和linux同步文件&linux开启SSH&ssh client 报 algorithm negotiation failed的解决方法之一

    1.安装.配置与启动 SSH分客户端openssh-client和openssh-server 如果你只是想登陆别的机器的SSH只需要安装openssh-client(ubuntu有默认安装,如果没有 ...

  5. [Algorithm] 使用SimHash进行海量文本去重

    在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(L ...

  6. Backtracking algorithm: rat in maze

    Sept. 10, 2015 Study again the back tracking algorithm using recursive solution, rat in maze, a clas ...

  7. [Algorithm & NLP] 文本深度表示模型——word2vec&doc2vec词向量模型

    深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? ...

  8. [Algorithm] 群体智能优化算法之粒子群优化算法

    同进化算法(见博客<[Evolutionary Algorithm] 进化算法简介>,进化算法是受生物进化机制启发而产生的一系列算法)和人工神经网络算法(Neural Networks,简 ...

  9. [Evolutionary Algorithm] 进化算法简介

    进化算法,也被成为是演化算法(evolutionary algorithms,简称EAs),它不是一个具体的算法,而是一个“算法簇”.进化算法的产生的灵感借鉴了大自然中生物的进化操作,它一般包括基因编 ...

随机推荐

  1. DigitalOcean上使用Tornado+MongoDB+Nginx+Supervisor+DnsPod快速搭建个人博客

    DigitalOcean 之前买了个便宜的VPS并且在上面搭建了我自己写的博客程序,后来VPS里运行MongoDB经常自己挂掉就索性没理了.直到现在VPS已经过期,服务器被强制关掉了.周末在家索性想着 ...

  2. crossplatform---Nodejs in Visual Studio Code 08.IIS

    1.开始 本文部分内容均转载自文章: http://www.hanselman.com/blog/InstallingAndRunningNodejsApplicationsWithinIISOnWi ...

  3. Sublime Text 全程指南

    摘要(Abstract) 本文系统全面的介绍了 Sublime Text,旨在成为最优秀的 Sublime Text 中文教程. 更新记录 2014/09/27:完成初稿 2014/09/28: 更正 ...

  4. paip.hql的调试故障排查流程总结

    paip.hql的调试故障排查流程总结 环境.myeclipse7.0 1 Hql的调试工具myeclipxe默认工具.../Hibernate8IDE 1 故障的排除方法overview 1 Hql ...

  5. TF Boys (TensorFlow Boys ) 养成记(二)

    TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...

  6. 关于eclipse android 在manifest改app应用包名注意事项

    在我刚学android 时候,然后立即就做项目.那时连eclipse 使用都不是很熟练.很多功能都不知道.新手如果这时去改app应用的包名,没有改好会变成所有控件在R文件里面id都找不到. 先上两张图 ...

  7. gulp+Babel 搭建ES6环境

    Gulp是什么? Gulp是一个工作流的构建系统,开发者可以使用它在网站开发过程中自动执行常见任务.Gulp是基于Node.js构建的,因此Gulp源文件和你用来定义任务的Gulp文件都被写进了Jav ...

  8. 从零开始学Bootstrap(1)

    最近需要做一个简单的Web页面. 考虑到前端经验不足,为了快速产出,同时项目只是一个工具,对项目没有什么要求,所以我选择了Bootstrap这个框架作为Web框架. 写从零开始学Bootstrap的初 ...

  9. SQL问题集锦

    1.union和union all的区别:http://www.cnblogs.com/xiangshu/articles/2054447.html

  10. php header函数详解

    客户机的请求方式格式:是统一资源标识符.协议版本号,后边是MIME信息包括请求修饰符.客户机信息和可能的内容!服务器响应格式:一个状态行包括信息的协议版本号.一个成功或错误的代码,后边是MIME信息包 ...