机器学习实战 - 读书笔记(05) - Logistic回归
解释
Logistic回归用于寻找最优化算法。
- 最优化算法可以解决最XX问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设计发动机使得油耗最少而功率最大?
我们可以看到最XX问题,有寻找最小(最短时间)和最大等。- 解决最小类问题会使用梯度下降法。可以想象为在一个山坡上寻找最陡的下坡路径。
- 同理,解决最大类问题会使用梯度上升法。可以想象为在一个山坡上寻找最陡的上坡路径。
寻找最优化算法,可以通过试图找到一个阶跃函数(step function),由于阶跃函数只返回0或者1.因此这个阶跃函数可以作为分类器。
一个方案是利用Sigmoid函数做出一个阶跃函数。
\(\sigma(z) = \frac{1}{1 + e^{-z}}\)
在人工神经网络中,Sigmoid函数是一种常见的激励函数(activation function)。
通过Sigmoid函数的曲线可以看出,其返回值在0到1之间,大部分值都贴近0或者1.只有z在0附近时,形成一个上升曲线,z=0是,返回值是0.5.
因此当Sigmoid函数返回值大于0.5,这个阶跃函数返回1,否则返回0.- 这时,问题变成如何算z。
\(z = w_0x_0 + w_1x_1 + ... + w_nx_n\)
如果采用向量的写法,上述公式可以写成
$ z = w^Tx$
它表示将这两个数值向量的对应元素相乘然后全部加起来即得到z值。其中的向量x是分类器的输入数据,向量w也就是我们要找到的最佳参数(系数),从而使得分类尽可能地精确.
这是一个线性函数。(为什么一定是线性函数?线性方程可以想象为一条直线(2维情况下),或者一个平面(3维情况下),第一:线性函数是递增或者递减的,复合sigmoid函数的要求,第二:比较好解。)
或者说这是一个多元一次方程,我们要根据训练数据算出最佳的\(w_0, ... w_n\).- 技巧1: 加入不变量。
比如在一元一次方程中\(z=w_0x_0\),由于没有常数项,就限制求出最佳解。因此可以变成\(z=w_0x_0 + w_1x_1\),其中\(x_0 = 1\)。这就是为什么书中的代码中加入1.0列的原因。
- 技巧1: 加入不变量。
- 如果求解w? 如果是求最大类问题,我们使用梯度上升算法的迭代公式。
\(w:= w + \alpha \nabla_wf(w)\)
其中,\(\alpha\)为步长。步长太大会导致震荡,找到的w不精确。步长太小会影响运算效率。步长可以在迭代的过程中改变。- 技巧2: 步长是一个重要的计算参数。正确的计算一个步长很关键。书中使用了动态步长,在计算中步长逐渐缩短。
从微积分的角度来说,这个公式就是在现在的w上加上激励函数的导数乘以步长。
- 技巧2: 步长是一个重要的计算参数。正确的计算一个步长很关键。书中使用了动态步长,在计算中步长逐渐缩短。
- 梯度上升法
所以梯度上升算法的迭代公式为:
\(w:= w + \alpha \nabla_wf(w)\)
书中的计算: weights = weights + alpha * (label - sigmoid(sum(dataMatrix[index] * weights)) * dataMatrix[index]
书中实际的计算公式为:
$w:= w + \alpha (c - f(x)) x $
其中:
\(w\)是向量。
\(\alpha\)是步长。
\(c\)是期望值, x的实际分类,值为0或1。
\(f(x)\)是sigmoid函数。可以是算总和,或者是向量。
\((c - f(x))\)有两个作用:一个是提供偏移方向,是增加还是减少。另外一个作用是偏移量的一个因子。如果f(x)是一个阶跃函数,则值为-1,0,1,这种情况下只有第一个作用。对于sigmoid函数,其值的范围[-1, 1]。
\(x\)是向量。书中似乎认为x越大,偏移量应该越大。
这个似乎有问题。一个问题是如果所有的x都很大,而且集中在一个区域里,则偏移量似乎过大。
第二,下面的例子:
测试数据1:
[
[[0, 1], [0]],
[[0, 2], [0]],
[[0, 4], [1]],
[[0, 5], [1]]]
测试数据2:
[
[[10000, 1], [0]],
[[10000, 2], [0]],
[[10000, 4], [1]],
[[10000, 5], [1]]]
这两个测试数据测分割线都是: \(0 = -3 + x_2\),和x无关。
这个情况下,书中的计算公式明显不正确。
这也说明这个迭代公式需要根据实际情况调整。- 技巧3: 需要大量的迭代才能算出最优的w。书中对测试数据进行了150迭代。
其它说明
梯度上升算法的迭代公式
梯度上升算法用来求函数的最大值。
\(w:= w + \alpha \nabla_wf(w)\)
其中,\(\alpha\)为步长。步长太大会导致震荡,找到的w不精确。步长太小会影响运算效率。书中的步长是数据size的1/10。步长可以在迭代的过程中改变。梯度下降算法的迭代公式
梯度下降算法用来求函数的最小值。
\(w:= w - \alpha \nabla_wf(w)\)Sigmoid函数的导数
\(f'(x) = f(x) [1-f(x)]\)梯度上升法,计算梯度
如果梯度记为\(\nabla\),则函数f(x,y)的梯度由下式表示:
\(\nabla f(x, y) = \binom{\frac{\nabla f(x, y)}{\nabla x}} {{\frac{\nabla f(x, y)}{\nabla y}}}\)
这个梯度意味着要沿x的方向移动 \(\frac{\nabla f(x, y)}{\nabla x}\),要沿y的方向移动 \(\frac{\nabla f(x, y)}{\nabla y}\)。
参考
- Machine Learning in Action by Peter Harrington
- 激活函数实现--2 Sigmoid函数实现
机器学习实战 - 读书笔记(05) - Logistic回归的更多相关文章
- 机器学习实战读书笔记(五)Logistic回归
Logistic回归的一般过程 1.收集数据:采用任意方法收集 2.准备数据:由于需要进行距离计算,因此要求数据类型为数值型.另外,结构化数据格式则最佳 3.分析数据:采用任意方法对数据进行分析 4. ...
- 机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归
机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018- ...
- 机器学习实战 - 读书笔记(13) - 利用PCA来简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第13章 - 利用PCA来简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. ...
- 机器学习实战 - 读书笔记(12) - 使用FP-growth算法来高效发现频繁项集
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第12章 - 使用FP-growth算法来高效发现频繁项集. 基本概念 FP-growt ...
- 机器学习实战 - 读书笔记(11) - 使用Apriori算法进行关联分析
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析. 基本概念 关联分析(associat ...
- 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是, ...
- <机器学习实战>读书笔记--logistic回归
1. 利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类. 2.sigmoid函数的分类 Sigmoid函数公式定义 3.梯度上升法 基本思想:要找 ...
- 机器学习实战 - 读书笔记(06) – SVM支持向量机
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知 ...
- 【转载】 机器学习实战 - 读书笔记(07) - 利用AdaBoost元算法提高分类性能
原文地址: https://www.cnblogs.com/steven-yang/p/5686473.html ------------------------------------------- ...
随机推荐
- Spring源码追踪3——AOP机制
研究代码: spring配置文件 <cache:annotation-driven /> Java代码 @Cacheable(value = "test", key = ...
- 推荐几个学习Node的网址:
推荐几个学习Node的网址: Nodejs 安装教程 http://jingyan.baidu.com/article/a948d6515d4c850a2dcd2e18.html http://nod ...
- Java Web 工作技巧总结 16.10
摘要: 原创出处:www.bysocket.com 泥瓦匠BYSocket 希望转载,保留摘要,谢谢! 在你成为领导者以前,成功只同自己的成长有关.当你成为领导者以后,成功都同别人的成长有关. 1.聊 ...
- angularjs, nodejs, express, gulp, karma, jasmine 前端方案整合
今年转向做前端开发,主要是做angularjs开发,期间接触了nodejs平台,从此一发不可收拾. npm丰富的插件库,express 开发框架, grunt, gulp构建工具,karma测试管理工 ...
- 关于STM8的用户数据空间读写问题
情况是这样的,我的程序里有一个参数,数值不超过1000,我要保存到EEPROM中,那就要分两个字节存放.我用下面的方式保存是正常的: BASE = 0x4000; param = 999; eepro ...
- 细数Qt开发的各种坑(欢迎围观)
1:Qt的版本多到你数都数不清,多到你开始怀疑人生.从4.6开始到5.8,从MSVC编译器到MINGW编译器,从32位到64位,从Windows到Linux到MAC.MSVC版本还必须安装对应的VS2 ...
- BATCH(BAT批处理命令语法)
bat语法备忘扩展名是bat(在nt/2000/xp/2003下也可以是cmd)的文件就是批处理文件[@more@] bat语法备忘扩展名是bat(在nt/2000/xp/2003下也可以是cmd)的 ...
- 2^x mod n = 1(欧拉定理,欧拉函数,快速幂乘)
2^x mod n = 1 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tot ...
- LINQ to SQL语句非常详细(原文来自于网络)
LINQ to SQL语句(1)之Where Where操作 适用场景:实现过滤,查询等功能. 说明:与SQL命令中的Where作用相似,都是起到范围限定也就是过滤作用的,而判断条件就是它后面所接的子 ...
- 解决 Tomcat 无法绑定 80 端口的问题,以及 Tomcat 配置虚拟目录、二级域名等
问题 今天安装完 Tomcat,安装时把 Tomcat 默认的 HTTP/1.1 Connector Port 从 8080 改为了 7080,启动 Tomcat,在浏览器中输入 Http://loc ...