题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4063

Description

You are playing a flying game. 
In the game, player controls an aircraft in a 2D-space. 
The mission is to drive the craft from starting point to terminal point. 
The craft needs wireless signal to move. 
A number of devices are placed in the 2D-space, spreading signal. 
For a device Di, it has a signal radius -- Ri. 
When the distance between the craft and Di is shorter or equal to Ri, it(the craft) gets Di's wireless signal. 
Now you need to tell me the shortest path from starting point to terminal point. 
 

Input

The first line of the input file is a single integer T. 
The rest of the test file contains T blocks. 
Each block starts with an integer n, followed by n devices given as (xi, yi, Ri). 
(xi, yi) is position of Di, and Ri is the radius of its signal range. 
The first point is the starting point. 
The last point is the terminal point. 
T <= 25; 
2 <= n <= 20 for most cases; 
20 < n <= 25 for several cases, completely random generated. 
-1000 <= xi, yi <= 1000 , 1 <= ri <= 1000. 
All are integers.
 

Output

For each case, Output "No such path." if the craft can't get to the terminal point. 
Otherwise, output a float number, correct the result to 4 decimal places.(as shown in the sample output) 
 
题目大意&题解:http://blog.csdn.net/zxy_snow/article/details/6849550
PS:首位共点的时候一直输出No such path没发现调了半天……
 
下面是用计算几何的方法,不知为何G++一直TLE(难道是我写错了?),可能是因为加入了大量的函数运算然后没有被优化……
顺便贴个模板
 
代码(C++ 750MS):
 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL; const int MAXN = ;
const int MAXV = MAXN * MAXN * ;
const int MAXE = MAXV * MAXV;
const double EPS = 1e-;
const double INF = 1e100; inline double sqr(double x) {
return x * x;
} inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator < (const Point &rhs) const {
if(sgn(x - rhs.x) != ) return x < rhs.x;
return sgn(y - rhs.y) < ;
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
double operator * (const Point &rhs) const {
return x * rhs.x + y * rhs.y;
}
Point operator * (double d) const {
return Point(x * d, y * d);
}
Point operator / (double d) const {
return Point(x / d, y / d);
}
Point rotate() const {
return Point(-y, x);
}
double length() const {
return sqrt(*this * *this);
}
}; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} double cross(const Point &o, const Point &a, const Point &b) {
return cross(a - o, b - o);
} double Point_to_Line(const Point &p, const Point &st, const Point &ed) {
return fabs(cross(p, st, ed)) / dist(st, ed);
} Point intersection(const Point &u1, const Point &u2, const Point &v1, const Point &v2) {
double t = cross(u1 - v1, v1 - v2) / cross(u1 - u2, v1 - v2);
return u1 + (u2 - u1) * t;
} struct Circle {
Point c;
double r;
Circle() {}
Circle(Point c, double r): c(c), r(r) {}
void read() {
c.read();
scanf("%lf", &r);
}
bool contain(const Circle &rhs) const {
return sgn(dist(c, rhs.c) + rhs.r - r) <= ;
}
bool contain(const Point &p) const {
return sgn(dist(c, p) - r) <= ;
}
bool intersect(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) < ;
}
bool tangency(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) == ;
}
}; int intersection(const Circle &cir, const Point &st, const Point &ed, Point &p1, Point &p2) {
if(sgn(Point_to_Line(cir.c, st, ed) - cir.r) > ) return ;
Point p = cir.c + (ed - st).rotate();
p = intersection(p, cir.c, st, ed);
double t = sqrt(sqr(cir.r) - sqr(dist(p, cir.c))) / dist(st, ed);
p1 = p + (ed - st) * t;
p2 = p - (ed - st) * t;
return - (p1 == p2);
} int intersection(const Circle &c1, const Circle &c2, Point &p1, Point &p2) {
if(c1.contain(c2) || c2.contain(c1)) return ;
if(!c1.intersect(c2) && !c1.tangency(c2)) return ;
double t = 0.5 * ( + (sqr(c1.r) - sqr(c2.r)) / sqr(dist(c1.c, c2.c)));
Point u = c1.c + (c2.c - c1.c) * t, v = u + (c1.c - c2.c).rotate();
return intersection(c1, u, v, p1, p2);
} struct Graph {
int head[MAXV], ecnt;
int to[MAXE], next[MAXE];
double cost[MAXE];
int n, st, ed; void init() {
memset(head, -, sizeof(head));
ecnt = ;
} void add_edge(int u, int v, double c) {
to[ecnt] = v; cost[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cost[ecnt] = c; next[ecnt] = head[v]; head[v] = ecnt++;
} double dis[MAXV];
bool vis[MAXV]; double dijksrta(int st, int ed, int n) {
for(int i = ; i < n; ++i) dis[i] = INF;
dis[st] = ;
memset(vis, , sizeof(vis));
while(true) {
int u = -; double d = INF;
for(int i = ; i < n; ++i) if(!vis[i])
if(dis[i] < d) d = dis[i], u = i;
if(d == INF) break;
vis[u] = true;
for(int p = head[u]; ~p; p = next[p]) {
int &v = to[p];
if(!vis[v]) dis[v] = min(dis[v], dis[u] + cost[p]);
}
}
return dis[ed];
}
} G; Circle cir[MAXN];
int T, n; Point list[MAXV]; bool havePath(Point st, Point ed) {
if(ed < st) swap(st, ed);
if(st == ed) return true;
Point p1, p2;
int pcnt = ;
list[pcnt++] = st;
list[pcnt++] = ed;
for(int i = ; i < n; ++i) {
int c = intersection(cir[i], st, ed, p1, p2);
if(c >= ) list[pcnt++] = p1;
if(c >= ) list[pcnt++] = p2;
}
sort(list, list + pcnt);
for(int i = ; i < pcnt; ++i) {
if(list[i] < st || list[i] == st) continue;
bool flag = false;
for(int j = ; j < n && !flag; ++j)
if(cir[j].contain(list[i]) && cir[j].contain(list[i - ])) flag = true;
if(!flag) return false;
if(list[i] == ed) break;
}
return true;
} Point p[MAXV];
int cnt; double solve() {
Point p1, p2;
cnt = ;
p[cnt++] = cir[].c; p[cnt++] = cir[n - ].c;
for(int i = ; i < n; ++i) {
for(int j = i + ; j < n; ++j) {
int c = intersection(cir[i], cir[j], p1, p2);
if(c >= ) p[cnt++] = p1;
if(c >= ) p[cnt++] = p2;
}
}
G.init();
for(int i = ; i < cnt; ++i) {
for(int j = i + ; j < cnt; ++j)
if(havePath(p[i], p[j])) G.add_edge(i, j, dist(p[i], p[j]));
}
return G.dijksrta(, , cnt);
} int main() {
scanf("%d", &T);
for(int kase = ; kase <= T; ++kase) {
scanf("%d", &n);
for(int i = ; i < n; ++i) cir[i].read();
double res = solve();
if(res == INF) printf("Case %d: No such path.\n", kase);
else printf("Case %d: %.4f\n", kase, res);
}
}

下面是用了一部分解析几何的方法,比上面的还要快……

代码(G++ 437MS):

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <numeric>
using namespace std;
typedef long long LL; const int MAXN = ;
const int MAXV = MAXN * MAXN * ;
const int MAXE = MAXV * MAXV;
const double EPS = 1e-;
const double INF = 1e100; inline double sqr(double x) {
return x * x;
} inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator < (const Point &rhs) const {
if(sgn(x - rhs.x) != ) return x < rhs.x;
return sgn(y - rhs.y) < ;
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
double operator * (const Point &rhs) const {
return x * rhs.x + y * rhs.y;
}
Point operator * (double d) const {
return Point(x * d, y * d);
}
Point operator / (double d) const {
return Point(x / d, y / d);
}
Point rotate() const {
return Point(-y, x);
}
double length() const {
return sqrt(*this * *this);
}
}; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cosIncludeAngle(const Point &a, const Point &b, const Point &o) {
Point p1 = a - o, p2 = b - o;
return (p1 * p2) / (p1.length() * p2.length());
} struct Circle {
Point c;
double r;
Circle() {}
Circle(Point c, double r): c(c), r(r) {}
void read() {
c.read();
scanf("%lf", &r);
}
bool contain(const Circle &rhs) const {
return sgn(dist(c, rhs.c) + rhs.r - r) <= ;
}
bool contain(const Point &p) const {
return sgn(dist(c, p) - r) <= ;
}
bool intersect(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) < ;
}
bool tangency(const Circle &rhs) const {
return sgn(dist(c, rhs.c) - r - rhs.r) == ;
}
}; int intersection(const Point &st, const Point &ed, const Circle &cir, Point &p1, Point &p2) {
double angle = cosIncludeAngle(ed, cir.c, st);
if(isnan(angle)) {
Point v = (ed - st) / dist(st, ed);
p1 = cir.c + v * cir.r;
p2 = cir.c - v * cir.r;
return + (cir.r > );
}
double B = dist(cir.c, st);
double a = , b = - * B * angle, c = sqr(B) - sqr(cir.r);
double delta = sqr(b) - * a * c;
if(sgn(delta) < ) return ;
if(sgn(delta) == ) delta = ;
double x1 = (-b - sqrt(delta)) / ( * a), x2 = (-b + sqrt(delta)) / ( * a);
Point v = (ed - st) / dist(ed, st);
p1 = st + v * x1;
p2 = st + v * x2;
return + sgn(delta);
} int intersection(const Circle &c1, const Circle &c2, Point &p1, Point &p2) {
if(c1.contain(c2) || c2.contain(c1)) return ;
if(!c1.intersect(c2) && !c1.tangency(c2)) return ;
double d = dist(c1.c, c2.c);
double d1 = (sqr(c2.r) + sqr(d) - sqr(c1.r)) / / d;
double d2 = sqrt(sqr(c2.r) - sqr(d1));
Point v1 = c2.c + (c1.c - c2.c) / d * d1;
Point v2 = (c1.c - c2.c).rotate() / d;
p1 = v1 + v2 * d2;
p2 = v1 - v2 * d2;
return - (p1 == p2);
} struct Graph {
int head[MAXV], ecnt;
int to[MAXE], next[MAXE];
double cost[MAXE];
int n, st, ed; void init() {
memset(head, -, sizeof(head));
ecnt = ;
} void add_edge(int u, int v, double c) {
to[ecnt] = v; cost[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
to[ecnt] = u; cost[ecnt] = c; next[ecnt] = head[v]; head[v] = ecnt++;
} double dis[MAXV];
bool vis[MAXV]; double dijksrta(int st, int ed, int n) {
for(int i = ; i < n; ++i) dis[i] = INF;
dis[st] = ;
memset(vis, , sizeof(vis));
while(true) {
int u = -; double d = INF;
for(int i = ; i < n; ++i) if(!vis[i])
if(dis[i] < d) d = dis[i], u = i;
if(d == INF) break;
vis[u] = true;
for(int p = head[u]; ~p; p = next[p]) {
int &v = to[p];
if(!vis[v]) dis[v] = min(dis[v], dis[u] + cost[p]);
}
}
return dis[ed];
}
} G; Circle cir[MAXN];
int T, n; Point list[MAXV]; bool havePath(Point st, Point ed) {
if(ed < st) swap(st, ed);
if(st == ed) return true;
Point p1, p2;
int pcnt = ;
list[pcnt++] = st;
list[pcnt++] = ed;
for(int i = ; i < n; ++i) {
int c = intersection(st, ed, cir[i], p1, p2);
if(c >= ) list[pcnt++] = p1;
if(c >= ) list[pcnt++] = p2;
}
sort(list, list + pcnt);
for(int i = ; i < pcnt; ++i) {
if(list[i] < st || list[i] == st) continue;
bool flag = false;
//Point x = (list[i] + list[i - 1]) / 2;
for(int j = ; j < n && !flag; ++j)
if(cir[j].contain(list[i]) && cir[j].contain(list[i - ])) flag = true;
if(!flag) return false;
if(list[i] == ed) break;
}
return true;
} Point p[MAXV];
int cnt; double solve() {
Point p1, p2;
cnt = ;
p[cnt++] = cir[].c; p[cnt++] = cir[n - ].c;
for(int i = ; i < n; ++i) {
for(int j = i + ; j < n; ++j) {
int c = intersection(cir[i], cir[j], p1, p2);
if(c >= ) p[cnt++] = p1;
if(c >= ) p[cnt++] = p2;
}
}
G.init();
for(int i = ; i < cnt; ++i) {
for(int j = i + ; j < cnt; ++j)
if(havePath(p[i], p[j])) G.add_edge(i, j, dist(p[i], p[j]));
}
return G.dijksrta(, , cnt);
} int main() {
scanf("%d", &T);
for(int kase = ; kase <= T; ++kase) {
scanf("%d", &n);
for(int i = ; i < n; ++i) cir[i].read();
double res = solve();
if(res == INF) printf("Case %d: No such path.\n", kase);
else printf("Case %d: %.4f\n", kase, res);
}
}

HDU 4063 Aircraft(计算几何)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)的更多相关文章

  1. HDU 4069 Squiggly Sudoku(DLX)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4069 Problem Description Today we play a squiggly sud ...

  2. HDU 4064 Carcassonne(插头DP)(The 36th ACM/ICPC Asia Regional Fuzhou Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4064 Problem Description Carcassonne is a tile-based ...

  3. HDU 4031 Attack(离线+线段树)(The 36th ACM/ICPC Asia Regional Chengdu Site —— Online Contest)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4031 Problem Description Today is the 10th Annual of ...

  4. HDU 4291 A Short problem(2012 ACM/ICPC Asia Regional Chengdu Online)

    HDU 4291 A Short problem(2012 ACM/ICPC Asia Regional Chengdu Online) 题目链接http://acm.hdu.edu.cn/showp ...

  5. 【动态规划】HDU 5492 Find a path (2015 ACM/ICPC Asia Regional Hefei Online)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5492 题目大意: 一个N*M的矩阵,一个人从(1,1)走到(N,M),每次只能向下或向右走.求(N+ ...

  6. hdu 5877 线段树(2016 ACM/ICPC Asia Regional Dalian Online)

    Weak Pair Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total ...

  7. HDU 4758——Walk Through Squares——2013 ACM/ICPC Asia Regional Nanjing Online

    与其说这是一次重温AC自动机+dp,倒不如说这是个坑,而且把队友给深坑了. 这个题目都没A得出来,我只觉得我以前的AC自动机的题目都白刷了——深坑啊. 题目的意思是给你两个串,每个串只含有R或者D,要 ...

  8. Hdu 5459 Jesus Is Here (2015 ACM/ICPC Asia Regional Shenyang Online) 递推

    题目链接: Hdu 5459 Jesus Is Here 题目描述: s1 = 'c', s2 = 'ff', s3 = s1 + s2; 问sn里面所有的字符c的距离是多少? 解题思路: 直觉告诉我 ...

  9. HDU 5010 Get the Nut(2014 ACM/ICPC Asia Regional Xi'an Online)

    思路:广搜, 因为空格加上动物最多只有32个那么对这32个进行编号,就能可以用一个数字来表示状态了,因为只有 ‘P’   'S' 'M' '.' 那么就可以用4进制刚好可以用64位表示. 接下去每次就 ...

随机推荐

  1. ::after,::before使用

    ::after,::before使用   1.:before 选择器在被选元素的内容前面插入内容. 请使用 content 属性来指定要插入的内容. <!DOCTYPE html> < ...

  2. 更新Delphi中SVN客户端版本的方法

    Delphi从XE以后集成里SVN客户端, 安装完Delphi以后, 在bin\subversion下, 存放的就是SVN客户端文件, 可惜版本有点低(好像是1.7的) 如果想更新成高版本的客户端文件 ...

  3. Bootstrap 图标菜单按钮组件

    ---恢复内容开始--- 一.小图标组件 Bootstrap 提供了免费的 263 个小图标(数了两次),具体可以参考中文官网的组件 链接:http://v3.bootcss.com/componen ...

  4. Excel VBA

    =COUNTIF(Y3:Y212,"=11") =SUMIF(Y3:Y212,"=11",AA3:AA212) =SUMPRODUCT((Y3:Y212=&qu ...

  5. Solr分页与高亮(使用SolrNet实现)

    Solr分页与高亮(使用SolrNet实现) 本节我们使用Asp.net MVC实现Solr客户端查询,建议使用SolrNet这个客户端,开源地址在:https://github.com/mausch ...

  6. MVC分页控件之二,为IQueryable定义一个扩展方法,直接反回PagedList<T>结果集(转)

    namespace Entity { public interface IPagedList { /// <summary> /// 记录数 /// </summary> in ...

  7. [LeetCode]题解(python):042-Trapping Rain Water

    题目来源 https://leetcode.com/problems/trapping-rain-water/ Given n non-negative integers representing a ...

  8. Docker数据管理

    用户在使用Docker的过程中,往往需要能查看容器内应用产生的数据,或者需要把容器内的数据进行备份,甚至多个容器之间进行数据共享,这必然涉及到Docker的数据管理. 容器中管理数据主要有两种方式: ...

  9. android中用Spannable在TextView中设置超链接、颜色、字体

    昨晚研读 ApiDemo 源码至 com.example.android.apis.text.Link 类.首先,看一下其运行效果:  要给 TextView 加上效果,方式主要有几种: 第一种,自动 ...

  10. ViewFlipper、ViewPager和Gallery

    1.ViewFlipper 1)View切换的控件—ViewFlipper介绍 ViewFilpper类继承于ViewAnimator类.而ViewAnimator类继承于FrameLayout. 查 ...