【Gym 100947E】Qwerty78 Trip(组合数取模/费马小定理)
从(1,1)到(n,m),每次向右或向下走一步,,不能经过(x,y),求走的方案数取模。
可以经过(x,y)则相当于m+n步里面选n步必须向下走,方案数为
再考虑其中经过(x,y)的方案数,也就是(1,1)到(x,y)的方案乘上(x,y)到(n,m)的方案,为
于是答案就是下式取模
m和n大到10的五次方,而组合数要用除法,所以要用费马小定理来求逆元。简单的说就是
而逆元用费马小定理和快速幂来算
最后减法取模记得要再加M再取一次模。
#include<bits/stdc++.h>
#define N 200005
#define M 1000000007
#define ll long long
using namespace std;
ll n,m,t,x,y,fac[N]= {};
ll qpow(ll a,ll b)
{
ll ans=;
ll k=a;
while(b)
{
if(b&)ans=ans*k%M;
k=k*k%M;
b>>=;
}
return ans;
}
ll C(ll n,ll m)
{
if(m>n)return ;
return fac[n]*qpow(fac[m],M-)%M*qpow(fac[n-m],M-)%M;
}
int main()
{
for(int i=; i<N; i++)fac[i]=fac[i-]*i%M;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d",&n,&m,&x,&y);
printf("%lld\n",((C(n+m-,n-)-C(x+y-,x-)*C(n-x+m-y,n-x)%M+M)%M));
}
return ;
}
【Gym 100947E】Qwerty78 Trip(组合数取模/费马小定理)的更多相关文章
- 51nod1119(除法取模/费马小定理求组合数)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1119 题意:中文题诶- 思路:这题数据比较大直接暴力肯定是不 ...
- HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description Sample Input 2 Sample Outp ...
- 数学【p2613】 【模板】有理数取余(费马小定理)
题目描述 给出一个有理数 c=a/b ,求 c mod 19260817的值. 说明 对于所有数据, 0≤a,b≤10^10001 分析: 一看题 这么短 哇简单!况且19260817还是个素数!(美 ...
- 2015 ICL, Finals, Div. 1 Ceizenpok’s formula(组合数取模,扩展lucas定理)
J. Ceizenpok’s formula time limit per test 2 seconds memory limit per test 256 megabytes input stand ...
- hdu 3037 费马小定理+逆元除法取模+Lucas定理
组合数学推推推最后,推得要求C(n+m,m)%p 其中n,m小于10^9,p小于1^5 用Lucas定理求(Lucas定理求nm较大时的组合数) 因为p数据较小可以直接阶乘打表求逆元 求逆元时,由费马 ...
- HDU4675【GCD of scequence】【组合数学、费马小定理、取模】
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p ...
- HDU4704Sum 费马小定理+大数取模
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可 ...
- hdu 4704 Sum【组合数学/费马小定理/大数取模】By cellur925
首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案? 答案是C(n-1,k-1). 然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求 ...
- 牛客Wannafly挑战赛13-BJxc军训-费马小定理、分式取模、快速幂
参考:https://blog.csdn.net/qq_40513946/article/details/79839320 传送门:https://www.nowcoder.com/acm/conte ...
随机推荐
- 关于SVN版本分支合并的知识
分支的合并类型 合并的工作是把主干或者分支上合并范围内的所有改动列出,并对比当前工作副本的内容,由合并者手工修改冲突,然后提交到服务器的相应目录里.如果当前工作副本是主干,则合并的范围是分支上的改动, ...
- Android Studio中提示:Project SDK is not defined
Android Studio中提示:Project SDK is not defined 2015 年 4 月 1 日 下午 9:04crifan已有2209人围观我来说几句 [背景] 之前用Andr ...
- gridControl控件动态绑定列
DataTable dt = =Query.GetCustome=(ref customColumnCount); //绑定列 gridView.Columns.Add(}); gridView.Co ...
- [5]Telerik Extensions for ASP.NET MVC 开发问题
1.Controller获取不到checkedNodes的问题 HTML @(Html.Telerik().TreeView() .Name("TreeView") ...
- QT QT程序初练
//界面编程#include "widget.h" #include "ui_widget.h" Widget::Widget(QWidget *parent) ...
- 各种同步方法性能比较(synchronized,ReentrantLock,Atomic)
5.0的多线程任务包对于同步的性能方面有了很大的改进,在原有synchronized关键字的基础上,又增加了ReentrantLock,以及各种Atomic类.了解其性能的优劣程度,有助与我们在特定的 ...
- 20135208 20135212 LINUX第一次实验报告
北京电子科技学院(BESTI) 实 验 报 告 课程:信息安全系统设计基础 班级: 201352 姓名:池彬宁 贺邦 学号:2013521 ...
- hugo-最好用的静态网站生成器
hugo最好用的静态网站生成器 Hugo是由Go语言实现的静态网站生成器.简单.易用.高效.易扩展.快速部署. 快速开始 安装Hugo 1. 二进制安装(推荐:简单.快速) 到 Hugo Releas ...
- Yii2-Redis使用小记 - Cache
前些天简单学习了下 Redis,现在准备在项目上使用它了.我们目前用的是 Yii2 框架,在官网搜索了下 Redis,就发现了yii2-redis这扩展. 安装后使用超简单,打开 common/con ...
- Java并发编程-ConcurrentHashMap
特点: 将桶分段,并在某个段上加锁,提高并发能力 源码分析: V put(K key, int hash, V value, boolean onlyIfAbsent) { lock(); try { ...