SGU 106 The equation
Time Limit:250MS Memory Limit:4096KB 64bit IO Format:%I64d & %I64u
Description
There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2, y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y). |
Input
Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value。
Output
Write answer to the output.
Sample Input
1 1 -3
0 4
0 4
Sample Output
4
我的思路就是首先把一个基本解求出来,然后看在x1、x2的范围内x的范围是多少,然后找到对应的y的范围,再看y的范围有多少个解是在y1、y2范围之内的,这个就是最后的答案。
当然,对于含有a=0或b=0的情况要特判一下。
附上一个很不错的网址:传送门
#include <iostream>
using namespace std;
typedef long long LL;
LL a,b,c,x1,x2,y1,y2,x,y,tmp,ans=;
LL mini = -361168601842738790LL;
LL maxi = 322337203685477580LL;
int extendedGcd(int a,int b){
if (b==){
x=;y=;
return a;
}
else{
int tmp = extendedGcd(b,a%b);
int t = x;
x=y;
y=t-a/b*y;
return tmp;
}
}
LL extendedGcd(LL a,LL b){
if (b == ){
x=;y=;
return a;
}
else{
LL TEMP = extendedGcd(b,a%b);
LL tt=x;
x=y;
y=tt-a/b*y;
return TEMP;
}
}
LL upper(LL a,LL b){
if (a<=)
return a/b;
return (a-)/b + ;
}
LL lower(LL a,LL b){
if (a>=)
return a/b;
return (a+)/b - ;
}
void update(LL L,LL R,LL wa){
if (wa<){
L=-L;R=-R;wa=-wa;
swap(L,R);
}
mini=max(mini,upper(L,wa));
maxi=min(maxi,lower(R,wa));
}
int main(){
cin >> a >> b >> c >> x1 >> x2 >> y1 >> y2;c=-c;
if (a== && b==){
if (c==) ans = (x2-x1+) * (y2-y1+);
}
else if (a== && b!=){
if (c % b==) {
tmp = c/b;
if (tmp>=y1 && tmp<=y2) ans = ;
}
}
else if (a!= && b==){
if (c % a==){
tmp = c/a;
if (tmp>=x1 && tmp<=x2) ans = ;
}
}
else{
LL d = extendedGcd(a,b);
if (c%d == ){
LL p = c/d;
update(x1-p*x,x2-p*x,b/d);
update(y1-p*y,y2-p*y,-a/d);
ans = maxi-mini+;
if (ans<) ans=;
}
}
cout << ans << endl;
}
SGU 106 The equation的更多相关文章
- SGU 106 The equation 扩展欧几里德
106. The equation time limit per test: 0.25 sec. memory limit per test: 4096 KB There is an equation ...
- 数论 + 扩展欧几里得 - SGU 106. The equation
The equation Problem's Link Mean: 给你7个数,a,b,c,x1,x2,y1,y2.求满足a*x+b*y=-c的解x满足x1<=x<=x2,y满足y1< ...
- SGU 106 The equation 扩展欧几里得好题
扩展欧几里得的应用……见算法竞赛入门经典p.179 注意两点:1.解不等式的时候除负数变号 2.各种特殊情况的判断( a=0 && b=0 && c=0 ) ( a=0 ...
- SGU 106 The Equation 扩展欧几里得应用
Sol:线性不定方程+不等式求解 证明的去搜下别人的证明就好了...数学题. #include <algorithm> #include <cstdio> #include & ...
- SGU 106 The equation【扩展欧几里得】
先放一张搞笑图.. 我一直wa2,这位不认识的大神一直wa9...这样搞笑的局面持续了一个晚上...最后各wa了10发才A... 题目链接: http://acm.hust.edu.cn/vjudge ...
- The equation SGU - 106
题目链接:https://codeforces.com/problemsets/acmsguru/problem/99999/106 这个题是关于EXGCD特别好的一个题目.题目大意:有一个等式ax+ ...
- The equation - SGU 106(扩展欧几里得)
题目大意:有一个二元一次方程,给出系数值和x与y的取值范围,求出来总共有多少对整数解. 分析:有以下几点情况. 1,系数a=0, b=0, 当c != 0的时候结果很明显是无解,当c=0的时候x,y可 ...
- 扩展欧几里德 SGU 106
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106 题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...
- SGU 106.Index of super-prime
时间限制:0.25s 空间限制:4M 题目大意: 在从下标1开始素数表里,下标为素数的素数,称为超级素数(Super-prime),给出一个n(n<=10000) ...
随机推荐
- RegexBuddy正则表达式工具
RegexBuddy非常的好用,而且还能生成.net的代码. 我们在使用正则匹配时,毕竟.net提供的方法中,对于多行匹配就不能用单纯的正则去实现,而我们需要把它转换成相应的类库方法进行实现. 那么R ...
- SQL多条件查询
SELECT a.tel,a.business_code,b.name AS business_name,a.register_time FROM T_RED_USER a LEFT JOIN T_P ...
- POJ1328Radar Installation(区间点覆盖问题)
Radar Installation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 68597 Accepted: 15 ...
- 【ASP.NET Web API教程】6.1 媒体格式化器
http://www.cnblogs.com/r01cn/archive/2013/05/17/3083400.html 6.1 Media Formatters6.1 媒体格式化器 本文引自:htt ...
- Java Observer 观察者
http://www.cnblogs.com/jaward/p/3277619.html 1.API 被观察者 java.util.Observable; public class Observabl ...
- C#面向对象中类的静态成员与非静态成员的区别
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- Java初学(一)
一.初识Java 1.JVM:Java跨平台是基于JVM(Java虚拟机)的,JVM不是跨平台的,针对不同平台有对应的JVM软件 2.JRE:Java开发出来的软件如果要运行还需要在环境中安装JRE( ...
- Web基础架构:负载均衡和LVS
在大规模互联网应用中,负载均衡设备是必不可少的一个节点,源于互联网应用的高并发和大流量的冲击压力,我们通常会在服务端部署多个无状态的应用服务器和若干有状态的存储服务器(数据库.缓存等等). 一.负载均 ...
- glibc 简介:
glibc 编辑 glibc是GNU发布的libc库,即c运行库.glibc是linux系统中最底层的api,几乎其它任何运行库都会依赖于glibc.glibc除了封装linux操作系统所提供的系统服 ...
- (ヒトコト)一个挺有趣的东西!作为一个动漫宅,游戏宅来说还是一个挺有趣的接口!banner上面就是
Hitokoto API 更新:2014.02.22 问题/反馈:api # hitokoto.us 数据获取:[ 数据获取 ] 调用举例:[ JavaScript + HTML (同步) ] [ J ...