H - The equation

Time Limit:250MS     Memory Limit:4096KB     64bit IO Format:%I64d & %I64u

Description

There is an equation ax + by + c = 0. Given a,b,c,x1,x2,y1,y2 you must determine, how many integer roots of this equation are satisfy to the following conditions : x1<=x<=x2,   y1<=y<=y2. Integer root of this equation is a pair of integer numbers (x,y).

Input

Input contains integer numbers a,b,c,x1,x2,y1,y2 delimited by spaces and line breaks. All numbers are not greater than 108 by absolute value。

Output

Write answer to the output.

Sample Input

1 1 -3
0 4
0 4

Sample Output

4

我的思路就是首先把一个基本解求出来,然后看在x1、x2的范围内x的范围是多少,然后找到对应的y的范围,再看y的范围有多少个解是在y1、y2范围之内的,这个就是最后的答案。

当然,对于含有a=0或b=0的情况要特判一下。

附上一个很不错的网址:传送门

#include <iostream>
using namespace std;
typedef long long LL;
LL a,b,c,x1,x2,y1,y2,x,y,tmp,ans=;
LL mini = -361168601842738790LL;
LL maxi = 322337203685477580LL;
int extendedGcd(int a,int b){
if (b==){
x=;y=;
return a;
}
else{
int tmp = extendedGcd(b,a%b);
int t = x;
x=y;
y=t-a/b*y;
return tmp;
}
}
LL extendedGcd(LL a,LL b){
if (b == ){
x=;y=;
return a;
}
else{
LL TEMP = extendedGcd(b,a%b);
LL tt=x;
x=y;
y=tt-a/b*y;
return TEMP;
}
}
LL upper(LL a,LL b){
if (a<=)
return a/b;
return (a-)/b + ;
}
LL lower(LL a,LL b){
if (a>=)
return a/b;
return (a+)/b - ;
}
void update(LL L,LL R,LL wa){
if (wa<){
L=-L;R=-R;wa=-wa;
swap(L,R);
}
mini=max(mini,upper(L,wa));
maxi=min(maxi,lower(R,wa));
}
int main(){
cin >> a >> b >> c >> x1 >> x2 >> y1 >> y2;c=-c;
if (a== && b==){
if (c==) ans = (x2-x1+) * (y2-y1+);
}
else if (a== && b!=){
if (c % b==) {
tmp = c/b;
if (tmp>=y1 && tmp<=y2) ans = ;
}
}
else if (a!= && b==){
if (c % a==){
tmp = c/a;
if (tmp>=x1 && tmp<=x2) ans = ;
}
}
else{
LL d = extendedGcd(a,b);
if (c%d == ){
LL p = c/d;
update(x1-p*x,x2-p*x,b/d);
update(y1-p*y,y2-p*y,-a/d);
ans = maxi-mini+;
if (ans<) ans=;
}
}
cout << ans << endl;
}

SGU 106 The equation的更多相关文章

  1. SGU 106 The equation 扩展欧几里德

    106. The equation time limit per test: 0.25 sec. memory limit per test: 4096 KB There is an equation ...

  2. 数论 + 扩展欧几里得 - SGU 106. The equation

    The equation Problem's Link Mean: 给你7个数,a,b,c,x1,x2,y1,y2.求满足a*x+b*y=-c的解x满足x1<=x<=x2,y满足y1< ...

  3. SGU 106 The equation 扩展欧几里得好题

    扩展欧几里得的应用……见算法竞赛入门经典p.179 注意两点:1.解不等式的时候除负数变号 2.各种特殊情况的判断( a=0 && b=0 && c=0 ) ( a=0 ...

  4. SGU 106 The Equation 扩展欧几里得应用

    Sol:线性不定方程+不等式求解 证明的去搜下别人的证明就好了...数学题. #include <algorithm> #include <cstdio> #include & ...

  5. SGU 106 The equation【扩展欧几里得】

    先放一张搞笑图.. 我一直wa2,这位不认识的大神一直wa9...这样搞笑的局面持续了一个晚上...最后各wa了10发才A... 题目链接: http://acm.hust.edu.cn/vjudge ...

  6. The equation SGU - 106

    题目链接:https://codeforces.com/problemsets/acmsguru/problem/99999/106 这个题是关于EXGCD特别好的一个题目.题目大意:有一个等式ax+ ...

  7. The equation - SGU 106(扩展欧几里得)

    题目大意:有一个二元一次方程,给出系数值和x与y的取值范围,求出来总共有多少对整数解. 分析:有以下几点情况. 1,系数a=0, b=0, 当c != 0的时候结果很明显是无解,当c=0的时候x,y可 ...

  8. 扩展欧几里德 SGU 106

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=106   题意:求ax + by + c = 0在[x1, x2], [y1, y2 ...

  9. SGU 106.Index of super-prime

    时间限制:0.25s 空间限制:4M 题目大意:                 在从下标1开始素数表里,下标为素数的素数,称为超级素数(Super-prime),给出一个n(n<=10000) ...

随机推荐

  1. BZOJ2654 tree

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  2. HDU2888 Check Corners

    Description Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 ...

  3. 洛谷P1262 间谍网络

    本来只想刷道小题,没想到还有点麻烦 题目描述 由于外国间谍的大量渗入,国家安全正处于高度的危机之中.如果A间谍手中掌握着关于B间谍的犯罪证据,则称A可以揭发B.有些间谍收受贿赂,只要给他们一定数量的美 ...

  4. Linux Network IO Model、Socket IO Model - select、poll、epoll

    目录 . 引言 . IO机制简介 . 阻塞式IO模型(blocking IO model) . 非阻塞式IO模型(noblocking IO model) . IO复用式IO模型(IO multipl ...

  5. SQL多条件查询

    SELECT a.tel,a.business_code,b.name AS business_name,a.register_time FROM T_RED_USER a LEFT JOIN T_P ...

  6. eclipse中建python项目并运行

    1. Help → Install New Software 2.Enter http://pydev.org/updates 3.点击Click "Next" and " ...

  7. java 内存分析

    Java堆内存(heap memory)的十个要点: 1. Java堆内存是操作系统分配给JVM的内存的一部分. 2. 当我们创建对象时,它们存储在Java堆内存中. 3. 为了便于垃圾回收,Java ...

  8. MyEclipse------File类的各种方法

    usingFile.jsp <%@ page language="java" import="java.util.*" pageEncoding=&quo ...

  9. Struts2拦截器Interceptor执行顺序理解

    invocation.invoke()方法是拦截器框架的实现核心,通过确定invocation.invoke()方法执行位置,来实现Action执行前后处理操作,在invocation.invoke( ...

  10. Spring依赖注入:注解注入总结

    更多11   spring   依赖注入   注解   java 注解注入顾名思义就是通过注解来实现注入,Spring和注入相关的常见注解有Autowired.Resource.Qualifier.S ...