本文主要是讲解spark里RDD的基础操作。RDD是spark特有的数据模型,谈到RDD就会提到什么弹性分布式数据集,什么有向无环图,本文暂时不去展开这些高深概念,在阅读本文时候,大家可以就把RDD当作一个数组,这样的理解对我们学习RDD的API是非常有帮助的。本文所有示例代码都是使用scala语言编写的。

  Spark里的计算都是操作RDD进行,那么学习RDD的第一个问题就是如何构建RDD,构建RDD从数据来源角度分为两类:第一类是从内存里直接读取数据,第二类就是从文件系统里读取,当然这里的文件系统种类很多常见的就是HDFS以及本地文件系统了。

  第一类方式从内存里构造RDD,使用的方法:makeRDD和parallelize方法,如下代码所示:

    /* 使用makeRDD创建RDD */
/* List */
val rdd01 = sc.makeRDD(List(1,2,3,4,5,6))
val r01 = rdd01.map { x => x * x }
println(r01.collect().mkString(","))
/* Array */
val rdd02 = sc.makeRDD(Array(1,2,3,4,5,6))
val r02 = rdd02.filter { x => x < 5}
println(r02.collect().mkString(",")) val rdd03 = sc.parallelize(List(1,2,3,4,5,6), 1)
val r03 = rdd03.map { x => x + 1 }
println(r03.collect().mkString(","))
/* Array */
val rdd04 = sc.parallelize(List(1,2,3,4,5,6), 1)
val r04 = rdd04.filter { x => x > 3 }
println(r04.collect().mkString(","))

  大家看到了RDD本质就是一个数组,因此构造数据时候使用的是List(链表)和Array(数组)类型。

  第二类方式是通过文件系统构造RDD,代码如下所示:

    val rdd:RDD[String] = sc.textFile("file:///D:/sparkdata.txt", 1)
val r:RDD[String] = rdd.flatMap { x => x.split(",") }
println(r.collect().mkString(","))

  这里例子使用的是本地文件系统,所以文件路径协议前缀是file://。

  构造了RDD对象了,接下来就是如何操作RDD对象了,RDD的操作分为转化操作(transformation)和行动操作(action),RDD之所以将操作分成这两类这是和RDD惰性运算有关,当RDD执行转化操作时候,实际计算并没有被执行,只有当RDD执行行动操作时候才会促发计算任务提交,执行相应的计算操作。区别转化操作和行动操作也非常简单,转化操作就是从一个RDD产生一个新的RDD操作,而行动操作就是进行实际的计算。

  下面是RDD的基础操作API介绍:

操作类型

函数名

作用

转化操作

map()

参数是函数,函数应用于RDD每一个元素,返回值是新的RDD

flatMap()

参数是函数,函数应用于RDD每一个元素,将元素数据进行拆分,变成迭代器,返回值是新的RDD

filter()

参数是函数,函数会过滤掉不符合条件的元素,返回值是新的RDD

distinct()

没有参数,将RDD里的元素进行去重操作

union()

参数是RDD,生成包含两个RDD所有元素的新RDD

intersection()

参数是RDD,求出两个RDD的共同元素

subtract()

参数是RDD,将原RDD里和参数RDD里相同的元素去掉

cartesian()

参数是RDD,求两个RDD的笛卡儿积

行动操作

collect()

返回RDD所有元素

count()

RDD里元素个数

countByValue()

各元素在RDD中出现次数

reduce()

并行整合所有RDD数据,例如求和操作

fold(0)(func)

和reduce功能一样,不过fold带有初始值

aggregate(0)(seqOp,combop)

和reduce功能一样,但是返回的RDD数据类型和原RDD不一样

foreach(func)

对RDD每个元素都是使用特定函数

  下面是以上API操作的示例代码,如下:

  转化操作:

    val rddInt:RDD[Int] = sc.makeRDD(List(1,2,3,4,5,6,2,5,1))
val rddStr:RDD[String] = sc.parallelize(Array("a","b","c","d","b","a"), 1)
val rddFile:RDD[String] = sc.textFile(path, 1) val rdd01:RDD[Int] = sc.makeRDD(List(1,3,5,3))
val rdd02:RDD[Int] = sc.makeRDD(List(2,4,5,1)) /* map操作 */
println("======map操作======")
println(rddInt.map(x => x + 1).collect().mkString(","))
println("======map操作======")
/* filter操作 */
println("======filter操作======")
println(rddInt.filter(x => x > 4).collect().mkString(","))
println("======filter操作======")
/* flatMap操作 */
println("======flatMap操作======")
println(rddFile.flatMap { x => x.split(",") }.first())
println("======flatMap操作======")
/* distinct去重操作 */
println("======distinct去重======")
println(rddInt.distinct().collect().mkString(","))
println(rddStr.distinct().collect().mkString(","))
println("======distinct去重======")
/* union操作 */
println("======union操作======")
println(rdd01.union(rdd02).collect().mkString(","))
println("======union操作======")
/* intersection操作 */
println("======intersection操作======")
println(rdd01.intersection(rdd02).collect().mkString(","))
println("======intersection操作======")
/* subtract操作 */
println("======subtract操作======")
println(rdd01.subtract(rdd02).collect().mkString(","))
println("======subtract操作======")
/* cartesian操作 */
println("======cartesian操作======")
println(rdd01.cartesian(rdd02).collect().mkString(","))
println("======cartesian操作======")

  行动操作代码如下:

    val rddInt:RDD[Int] = sc.makeRDD(List(1,2,3,4,5,6,2,5,1))
val rddStr:RDD[String] = sc.parallelize(Array("a","b","c","d","b","a"), 1) /* count操作 */
println("======count操作======")
println(rddInt.count())
println("======count操作======")
/* countByValue操作 */
println("======countByValue操作======")
println(rddInt.countByValue())
println("======countByValue操作======")
/* reduce操作 */
println("======countByValue操作======")
println(rddInt.reduce((x ,y) => x + y))
println("======countByValue操作======")
/* fold操作 */
println("======fold操作======")
println(rddInt.fold(0)((x ,y) => x + y))
println("======fold操作======")
/* aggregate操作 */
println("======aggregate操作======")
val res:(Int,Int) = rddInt.aggregate((0,0))((x,y) => (x._1 + x._2,y),(x,y) => (x._1 + x._2,y._1 + y._2))
println(res._1 + "," + res._2)
println("======aggregate操作======")
/* foeach操作 */
println("======foeach操作======")
println(rddStr.foreach { x => println(x) })
println("======foeach操作======")

  RDD操作暂时先学习到这里,剩下的内容在下一篇里再谈了,下面我要说说如何开发spark,安装spark的内容我后面会使用专门的文章进行讲解,这里我们假设已经安装好了spark,那么我们就可以在已经装好的spark服务器上使用spark-shell进行与spark交互的shell,这里我们直接可以敲打代码编写spark程序。但是spark-shell毕竟使用太麻烦,而且spark-shell一次只能使用一个用户,当另外一个用户要使用spark-shell就会把前一个用户踢掉,而且shell也没有IDE那种代码补全,代码校验的功能,使用起来很是痛苦。

  不过spark的确是一个神奇的框架,这里的神奇就是指spark本地开发调试非常简单,本地开发调试不需要任何已经装好的spark系统,我们只需要建立一个项目,这个项目可以是java的也可以是scala,然后我们将spark-assembly-1.6.1-hadoop2.6.0.jar这样的jar放入项目的环境里,这个时候我们就可以在本地开发调试spark程序了。

  大家请看我们装有scala插件的eclipse里的完整代码:

package cn.com.sparktest

import org.apache.spark.SparkConf
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD object SparkTest {
val conf:SparkConf = new SparkConf().setAppName("xtq").setMaster("local[2]")
val sc:SparkContext = new SparkContext(conf) /**
* 创建数据的方式--从内存里构造数据(基础)
*/
def createDataMethod():Unit = {
/* 使用makeRDD创建RDD */
/* List */
val rdd01 = sc.makeRDD(List(1,2,3,4,5,6))
val r01 = rdd01.map { x => x * x }
println("===================createDataMethod:makeRDD:List=====================")
println(r01.collect().mkString(","))
println("===================createDataMethod:makeRDD:List=====================")
/* Array */
val rdd02 = sc.makeRDD(Array(1,2,3,4,5,6))
val r02 = rdd02.filter { x => x < 5}
println("===================createDataMethod:makeRDD:Array=====================")
println(r02.collect().mkString(","))
println("===================createDataMethod:makeRDD:Array=====================") /* 使用parallelize创建RDD */
/* List */
val rdd03 = sc.parallelize(List(1,2,3,4,5,6), 1)
val r03 = rdd03.map { x => x + 1 }
println("===================createDataMethod:parallelize:List=====================")
println(r03.collect().mkString(","))
println("===================createDataMethod:parallelize:List=====================")
/* Array */
val rdd04 = sc.parallelize(List(1,2,3,4,5,6), 1)
val r04 = rdd04.filter { x => x > 3 }
println("===================createDataMethod:parallelize:Array=====================")
println(r04.collect().mkString(","))
println("===================createDataMethod:parallelize:Array=====================")
} /**
* 创建Pair Map
*/
def createPairRDD():Unit = {
val rdd:RDD[(String,Int)] = sc.makeRDD(List(("key01",1),("key02",2),("key03",3)))
val r:RDD[String] = rdd.keys
println("===========================createPairRDD=================================")
println(r.collect().mkString(","))
println("===========================createPairRDD=================================")
} /**
* 通过文件创建RDD
* 文件数据:
* key01,1,2.3
key02,5,3.7
key03,23,4.8
key04,12,3.9
key05,7,1.3
*/
def createDataFromFile(path:String):Unit = {
val rdd:RDD[String] = sc.textFile(path, 1)
val r:RDD[String] = rdd.flatMap { x => x.split(",") }
println("=========================createDataFromFile==================================")
println(r.collect().mkString(","))
println("=========================createDataFromFile==================================")
} /**
* 基本的RDD操作
*/
def basicTransformRDD(path:String):Unit = {
val rddInt:RDD[Int] = sc.makeRDD(List(1,2,3,4,5,6,2,5,1))
val rddStr:RDD[String] = sc.parallelize(Array("a","b","c","d","b","a"), 1)
val rddFile:RDD[String] = sc.textFile(path, 1) val rdd01:RDD[Int] = sc.makeRDD(List(1,3,5,3))
val rdd02:RDD[Int] = sc.makeRDD(List(2,4,5,1)) /* map操作 */
println("======map操作======")
println(rddInt.map(x => x + 1).collect().mkString(","))
println("======map操作======")
/* filter操作 */
println("======filter操作======")
println(rddInt.filter(x => x > 4).collect().mkString(","))
println("======filter操作======")
/* flatMap操作 */
println("======flatMap操作======")
println(rddFile.flatMap { x => x.split(",") }.first())
println("======flatMap操作======")
/* distinct去重操作 */
println("======distinct去重======")
println(rddInt.distinct().collect().mkString(","))
println(rddStr.distinct().collect().mkString(","))
println("======distinct去重======")
/* union操作 */
println("======union操作======")
println(rdd01.union(rdd02).collect().mkString(","))
println("======union操作======")
/* intersection操作 */
println("======intersection操作======")
println(rdd01.intersection(rdd02).collect().mkString(","))
println("======intersection操作======")
/* subtract操作 */
println("======subtract操作======")
println(rdd01.subtract(rdd02).collect().mkString(","))
println("======subtract操作======")
/* cartesian操作 */
println("======cartesian操作======")
println(rdd01.cartesian(rdd02).collect().mkString(","))
println("======cartesian操作======")
} /**
* 基本的RDD行动操作
*/
def basicActionRDD():Unit = {
val rddInt:RDD[Int] = sc.makeRDD(List(1,2,3,4,5,6,2,5,1))
val rddStr:RDD[String] = sc.parallelize(Array("a","b","c","d","b","a"), 1) /* count操作 */
println("======count操作======")
println(rddInt.count())
println("======count操作======")
/* countByValue操作 */
println("======countByValue操作======")
println(rddInt.countByValue())
println("======countByValue操作======")
/* reduce操作 */
println("======countByValue操作======")
println(rddInt.reduce((x ,y) => x + y))
println("======countByValue操作======")
/* fold操作 */
println("======fold操作======")
println(rddInt.fold(0)((x ,y) => x + y))
println("======fold操作======")
/* aggregate操作 */
println("======aggregate操作======")
val res:(Int,Int) = rddInt.aggregate((0,0))((x,y) => (x._1 + x._2,y),(x,y) => (x._1 + x._2,y._1 + y._2))
println(res._1 + "," + res._2)
println("======aggregate操作======")
/* foeach操作 */
println("======foeach操作======")
println(rddStr.foreach { x => println(x) })
println("======foeach操作======")
} def main(args: Array[String]): Unit = {
println(System.getenv("HADOOP_HOME"))
createDataMethod()
createPairRDD()
createDataFromFile("file:///D:/sparkdata.txt")
basicTransformRDD("file:///D:/sparkdata.txt")
basicActionRDD()
/*打印结果*/
/*D://hadoop
===================createDataMethod:makeRDD:List=====================
1,4,9,16,25,36
===================createDataMethod:makeRDD:List=====================
===================createDataMethod:makeRDD:Array=====================
1,2,3,4
===================createDataMethod:makeRDD:Array=====================
===================createDataMethod:parallelize:List=====================
2,3,4,5,6,7
===================createDataMethod:parallelize:List=====================
===================createDataMethod:parallelize:Array=====================
4,5,6
===================createDataMethod:parallelize:Array=====================
===========================createPairRDD=================================
key01,key02,key03
===========================createPairRDD=================================
key01,1,2.3,key02,5,3.7,key03,23,4.8,key04,12,3.9,key05,7,1.3
=========================createDataFromFile==================================
2,3,4,5,6,7,3,6,2
======map操作======
======filter操作======
5,6,5
======filter操作======
======flatMap操作======
key01
======flatMap操作======
======distinct去重======
4,6,2,1,3,5
======distinct去重======
======union操作======
1,3,5,3,2,4,5,1
======union操作======
======intersection操作======
1,5
======intersection操作======
======subtract操作======
3,3
======subtract操作======
======cartesian操作======
(1,2),(1,4),(3,2),(3,4),(1,5),(1,1),(3,5),(3,1),(5,2),(5,4),(3,2),(3,4),(5,5),(5,1),(3,5),(3,1)
======cartesian操作======
======count操作======
9
======count操作======
======countByValue操作======
Map(5 -> 2, 1 -> 2, 6 -> 1, 2 -> 2, 3 -> 1, 4 -> 1)
======countByValue操作======
======countByValue操作======
29
======countByValue操作======
======fold操作======
29
======fold操作======
======aggregate操作======
19,10
======aggregate操作======
======foeach操作======
a
b
c
d
b
a
======foeach操作======*/
}
}

  Spark执行时候我们需要构造一个SparkContenxt的环境变量,构造环境变量时候需要构造一个SparkConf对象,例如代码:setAppName("xtq").setMaster("local[2]")

  appName就是spark任务名称,master为local[2]是指使用本地模式,启动2个线程完成spark任务。

  在eclipse里运行spark程序时候,会报出如下错误:

java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:355)
at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:370)
at org.apache.hadoop.util.Shell.<clinit>(Shell.java:363)
at org.apache.hadoop.util.StringUtils.<clinit>(StringUtils.java:79)
at org.apache.hadoop.security.Groups.parseStaticMapping(Groups.java:104)
at org.apache.hadoop.security.Groups.<init>(Groups.java:86)
at org.apache.hadoop.security.Groups.<init>(Groups.java:66)
at org.apache.hadoop.security.Groups.getUserToGroupsMappingService(Groups.java:280)
at org.apache.hadoop.security.UserGroupInformation.initialize(UserGroupInformation.java:271)
at org.apache.hadoop.security.UserGroupInformation.ensureInitialized(UserGroupInformation.java:248)
at org.apache.hadoop.security.UserGroupInformation.loginUserFromSubject(UserGroupInformation.java:763)
at org.apache.hadoop.security.UserGroupInformation.getLoginUser(UserGroupInformation.java:748)
at org.apache.hadoop.security.UserGroupInformation.getCurrentUser(UserGroupInformation.java:621)
at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2160)
at org.apache.spark.util.Utils$$anonfun$getCurrentUserName$1.apply(Utils.scala:2160)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.util.Utils$.getCurrentUserName(Utils.scala:2160)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:322)
at cn.com.sparktest.SparkTest$.<init>(SparkTest.scala:10)
at cn.com.sparktest.SparkTest$.<clinit>(SparkTest.scala)
at cn.com.sparktest.SparkTest.main(SparkTest.scala)

  该错误不会影响程序的运算,但总是让人觉得不舒服,这个问题是因为spark运行依赖于hadoop,可是在window下其实是无法安装hadoop,只能使用cygwin模拟安装,而新版本的hadoop在windows下使用需要使用winutils.exe,解决这个问题很简单,就是下载一个winutils.exe,注意下自己操作系统是32位还是64位,找到对应版本,然后放置在这样的目录下:

  D:\hadoop\bin\winutils.exe

  然后再环境变量里定义HADOOP_HOME= D:\hadoop

  环境变量的改变要重启eclipse,这样环境变量才会生效,这个时候程序运行就不会报出错误了。

Spark笔记:RDD基本操作(上)的更多相关文章

  1. Spark学习笔记2——RDD(上)

    目录 Spark学习笔记2--RDD(上) RDD是什么? 例子 创建 RDD 并行化方式 读取外部数据集方式 RDD 操作 转化操作 行动操作 惰性求值 Spark学习笔记2--RDD(上) 笔记摘 ...

  2. Spark笔记:RDD基本操作(下)

    上一篇里我提到可以把RDD当作一个数组,这样我们在学习spark的API时候很多问题就能很好理解了.上篇文章里的API也都是基于RDD是数组的数据模型而进行操作的. Spark是一个计算框架,是对ma ...

  3. Spark RDD/Core 编程 API入门系列 之rdd实战(rdd基本操作实战及transformation和action流程图)(源码)(三)

    本博文的主要内容是: 1.rdd基本操作实战 2.transformation和action流程图 3.典型的transformation和action RDD有3种操作: 1.  Trandform ...

  4. Spark学习笔记——RDD编程

    1.RDD——弹性分布式数据集(Resilient Distributed Dataset) RDD是一个分布式的元素集合,在Spark中,对数据的操作就是创建RDD.转换已有的RDD和调用RDD操作 ...

  5. RDD编程 上(Spark自学三)

    弹性分布式数据集(简称RDD)是Spark对数据的核心抽象.RDD其实就是分布式的元素集合.在Spark中,对数据的操作不外乎创建RDD.转化已有RDD以及调用RDD操作进行求值.而在这一切背后,Sp ...

  6. Spark 基础及RDD基本操作

    什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据 ...

  7. 关于Spark中RDD的设计的一些分析

    RDD, Resilient Distributed Dataset,弹性分布式数据集, 是Spark的核心概念. 对于RDD的原理性的知识,可以参阅Resilient Distributed Dat ...

  8. 4. Spark在集群上运行

    *以下内容由<Spark快速大数据分析>整理所得. 读书笔记的第四部分是讲的是Spark在集群上运行的知识点. 一.Spark应用组件介绍 二.Spark在集群运行过程 三.Spark配置 ...

  9. [Spark] Spark的RDD编程

    本篇博客中的操作都在 ./bin/pyspark 中执行. RDD,即弹性分布式数据集(Resilient Distributed Dataset),是Spark对数据的核心抽象.RDD是分布式元素的 ...

随机推荐

  1. 【AR实验室】OpenGL ES绘制相机(OpenGL ES 1.0版本)

    0x00 - 前言 之前做一些移动端的AR应用以及目前看到的一些AR应用,基本上都是这样一个套路:手机背景显示现实场景,然后在该背景上进行图形学绘制.至于图形学绘制时,相机外参的解算使用的是V-SLA ...

  2. “.Net 社区虚拟大会”(dotnetConf) 2016 Day 3 Keynote: Scott Hanselman

    美国时间 6月7日--9日,为期三天的微软.NET社区虚拟大会正式在 Channel9 上召开,美国时间6.9 是第三天, Scott Hanselman 做Keynote.今天主题围绕的是.NET ...

  3. sonn_game网站开发01:写在最前面

    之前做的个人博客项目,日向博客现在已经进入后期完善阶段了.是时候开始打造一个新坑了. 然而改造个什么坑呢?构思了好几天,想了好多方案,都觉得没啥动手欲望.因为,我想做的是那种,自己能用得上,而且有一定 ...

  4. 一起学微软Power BI系列-使用技巧(1)连接Oracle与Mysql数据库

    说起Oracle数据库,以前没用过Oracle不知道,但是这1年用Oracle后,发现真的是想狂吐槽,特别是那个.NET驱动和链接字符串,特别奇葩.总归是和其他数据库不一样,标新立异,不知道为何.另外 ...

  5. C#多线程之线程同步篇1

    在多线程(线程同步)中,我们将学习多线程中操作共享资源的技术,学习到的知识点如下所示: 执行基本的原子操作 使用Mutex构造 使用SemaphoreSlim构造 使用AutoResetEvent构造 ...

  6. 算法与数据结构(十一) 平衡二叉树(AVL树)

    今天的博客是在上一篇博客的基础上进行的延伸.上一篇博客我们主要聊了二叉排序树,详情请戳<二叉排序树的查找.插入与删除>.本篇博客我们就在二叉排序树的基础上来聊聊平衡二叉树,也叫AVL树,A ...

  7. js数组学习整理

    原文地址:js数组学习整理 常用的js数组操作方法及原理 1.声明数组的方式 var colors = new Array();//空的数组 var colors = new Array(3); // ...

  8. 【夯实PHP基础】PHP数组,字符串,对象等基础面面观

    本文地址 分享提纲 1.数组篇 2.字符创篇 3.函数篇 4.面向对象篇 5.其他篇 /*************************** 一.数组篇 Begin***************** ...

  9. Oracle 表空间和用户权限管理

    一. 表空间 Oracle数据库包含逻辑结构和物理结构. 数据库的物理结构指的是构成数据库的一组操作系统文件. 数据库的逻辑结构是指描述数据组织方式的一组逻辑概念以及它们之间的关系. 表空间是数据库逻 ...

  10. [转]nopCommerce Widgets and How to Create One

    本文转自:https://dzone.com/articles/what-are-nopcommerce-widgets-and-how-to-create-one A widget is a sta ...