在 C/C++ 中, 直接利用 (x + y) >> 1 来计算 \(\left\lfloor {\left( {x + y} \right)/2} \right\rfloor\) (两个整数的平均值并向下取整)以及直接利用 (x + y + 1) >> 1 来计算 \(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) (两个整数的平均值并向上取整)的结果可能有误, 因为 (x + y) >> 1(x + y + 1) >> 1 中的 x + y 可能会发生数值溢出. 而 \(\left\lfloor {\left( {x + y} \right)/2} \right\rfloor\) 和 \(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 的结果是不可能数值溢出的, 这就引发我们思考可不可能通过某种方式来规避平均值计算中的数值溢出.

方式一

利用如下公式

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor = \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lfloor {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rfloor \hfill \\
\left\lceil {\left( {x + y} \right)/2} \right\rceil = \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lceil {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rceil \hfill \\
\end{align}\)

下面是对上述两式的证明:

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor &= \left\{ {\begin{array}{*{20}{c}}
{m + n}&{x = 2m,y = 2n} \\
{m + n}&{x = 2m + 1,y = 2n} \\
{m + n}&{x = 2m,y = 2n + 1} \\
{m + n + 1}&{x = 2m + 1,y = 2n + 1}
\end{array}} \right. \\
&= \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lfloor {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rfloor \\
\end{align}\)

\(\begin{align}
\left\lceil {\left( {x + y} \right)/2} \right\rceil &= \left\{ {\begin{array}{*{20}{c}}
{m + n}&{x = 2m,y = 2n} \\
{m + n + 1}&{x = 2m + 1,y = 2n} \\
{m + n + 1}&{x = 2m,y = 2n + 1} \\
{m + n + 1}&{x = 2m + 1,y = 2n + 1}
\end{array}} \right. \\
&= \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lceil {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rceil \\
\end{align}\)

其中 \(m,n\) 均为整数.

借用上面的公式可以 \(\left\lfloor {\left( {x + y} \right)/2} \right\rfloor\) 转化为如下的 C/C++ 代码 (据说这段代码还被申请了专利):

(x >> 1) + (y >> 1) + (x & y & 1);

可以将 \(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 转化为如下的 C/C++ 代码:

(x >> 1) + (y >> 1) + ((x | y) & 1);

这两段代码都不会发生数值溢出.

方式二

设 x 和 y 只能取 0 和 1 值, 则:

x y x + y x ^ y x & y x | y 2*(x & y) + (x ^ y) 2*(x | y) - (x ^ y)
0 0 0 0 0 0 0 + 0 = 0 0 - 0 = 0
0 1 1 1 0 1 0 + 1 = 1 10 - 1 = 1
1 0 1 1 0 1 0 + 1 = 1 10 - 1 = 1
1 1 10 0 1 1 10 + 0 = 10 10 - 0 = 10

注意上表中的 10 是二进制下的 10, 即十进制下的 2, & 是逻辑与操作, | 是逻辑或运算, ^ 是逻辑异或操作.

由上表可见 x + y = 2*(x & y) + (x ^ y) = 2*(x | y) - (x ^ y).

无符号整型

对于无符号整型, 设 \(x = \sum\nolimits_{i = 0}^{n - 1} {{u_i}{2^i}}\) 和 \(y = \sum\nolimits_{i = 0}^{n - 1} {{v_i}{2^i}}\), 其中 \(u_i,v_i\in\left\{ 0, 1 \right\}\).

\(\begin{align}
x + y &= \sum\nolimits_{i = 0}^{n - 1} {{u_i}{2^i}} {\text{ + }}\sum\nolimits_{i = 0}^{n - 1} {{v_i}{2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {2 \times \left( {{u_i}\& {v_i}} \right) + \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^i}} \\
\end{align}\)

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor &= \left\lfloor {\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right\rfloor \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} + \sum\nolimits_{i = 1}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} \\
\end{align}\)

上式用 C/C++语言可以表示为:

(x & y) + ((x ^ y) >> 1);

\(\begin{align}
x + y &= \sum\nolimits_{i = 0}^{n - 1} {{u_i}{2^i}} {\text{ + }}\sum\nolimits_{i = 0}^{n - 1} {{v_i}{2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {2 \times \left( {{u_i}|{v_i}} \right) - \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} - \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^i}} \\
\end{align}\)

\(\begin{align}
\left\lceil {\left( {x + y} \right)/2} \right\rceil &= \left\lceil {\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} - \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right\rceil \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} - \sum\nolimits_{i = 1}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} \\
\end{align}\)

上式用 C/C++ 语言可以表示为:

(x | y) - ((x ^ y) >> 1);

有符号整型

对于有符号整型, 设 \(x = - {u_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{u_i}{2^i}}\) 和 \(y = - {v_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{v_i}{2^i}}\), 其中 \(u_i,v_i\in\left\{ 0, 1 \right\}\).

\(\begin{align}
x + y &= - {u_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{u_i}{2^i}} - {v_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{v_i}{2^i}} \\
&= - \left( {{u_{n - 1}} + {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= - \left( {2 \times \left( {{u_{n - 1}}\& {v_{n - 1}}} \right) + \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right)} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {2 \times \left( {{u_i}\& {v_i}} \right) + \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\left( { - \left( {{u_{n - 1}}\& {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} } \right) + \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^i}} } \right) \\
\end{align}\)

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor &= \left\lfloor {\left( { - \left( {{u_{n - 1}}\& {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} } \right) + \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right)} \right\rfloor \\
&= \left( { - \left( {{u_{n - 1}}\& {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} } \right) + \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 1}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right) \\
\end{align}\)

上式用 C/C++ 语言可以表示为:

(x & y) + ((x ^ y) >> 1);

\(\begin{align}
x + y &= - {u_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{u_i}{2^i}} - {v_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{v_i}{2^i}} \\
&= - \left( {{u_{n - 1}} + {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= - \left( {2 \times \left( {{u_{n - 1}}|{v_{n - 1}}} \right) - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right)} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {2 \times \left( {{u_i}|{v_i}} \right) - \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\left( { - \left( {{u_{n - 1}}|{v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} } \right) - \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^i}} } \right) \\
\end{align}\)

\(\begin{align}
\left\lceil {\left( {x + y} \right)/2} \right\rceil &= \left\lceil {\left( { - \left( {{u_{n - 1}}|{v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} } \right) - \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right)} \right\rceil \\
&= \left( { - \left( {{u_{n - 1}}|{v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} } \right) - \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 1}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right) \\
\end{align}\)

上式用 C/C++ 语言可以表示为:

(x | y) - ((x ^ y) >> 1);

综合

综合上面的分析, 可见对于有符号整型和无符号整型,

\(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 都可以用 C/C++ 语言表示为:

(x & y) + ((x ^ y) >> 1);

\(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 都可以用 C/C++ 语言表示为:

(x | y) - ((x ^ y) >> 1);

参考:

版权声明

版权声明:自由分享,保持署名-非商业用途-非衍生,知识共享3.0协议。

如果你对本文有疑问或建议,欢迎留言!转载请保留版权声明!

如果你觉得本文不错, 也可以用微信赞赏一下哈.

C/C++代码优化之求两个整型的平均值的更多相关文章

  1. swap 用指针交换两个整型数值

  2. c++作业:输入两个整数,用函数求两数之和。函数外部声明有什么作用?

    #include <iostream> using namespace std; int main(){ //求两数的和? int a,b,s; cout<<"请你输 ...

  3. Php数据类型之整型详解

    php中支持的数据类型 在php中主要支持8种数据类型.和3中伪类型的一个形式.8种数据类型分为以下三3大类,第一个就是我们的标量类型,标量类型它只能存储单一数据,那第二大类就是我们的复合类型,第三个 ...

  4. java 整型相除得到浮点型

    public class TestFloatOrDouble { public static void main(String[] args) { Point num1 = new Point(84, ...

  5. python 函数求两个数的最大公约数和最小公倍数

    1. 求最小公倍数的算法: 最小公倍数  =  两个整数的乘积 /  最大公约数 所以我们首先要求出两个整数的最大公约数, 求两个数的最大公约数思路如下: 2. 求最大公约数算法: 1. 整数A对整数 ...

  6. JavaScript求两个数字之间所有数字的和

    这是在fcc上的中级算法中的第一题,拉出来的原因并不是因为有什么好说的,而是我刚看时以为是求两个数字的和, 很显然错了.我感觉自己的文字理解能力被严重鄙视了- -.故拉出来折腾折腾. 要求: 给你一个 ...

  7. [LeetCode] Intersection of Two Linked Lists 求两个链表的交点

    Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...

  8. 求两圆相交部分面积(C++)

    已知两圆圆心坐标和半径,求相交部分面积: #include <iostream> using namespace std; #include<cmath> #include&l ...

  9. 面试问题2:给一个5G的大文件,保存的数据为32位的整型,找到所有出现次数超过两次的数字

    问题描述:给一个5G的大文件,保存的数据为32位的整型,找到所有出现次数超过两次的数字 大数据操作: 解决方法一: 依次遍历文件数据, 开始32二进制清0 每次读取一个数,先和二进制位与,如果为0 则 ...

随机推荐

  1. 【WPF学习】第六十八章 自定义绘图元素

    上一章分析了WPF元素的内部工作元素——允许每个元素插入到WPF布局系统的MeasureOverride()和ArrangeOverride()方法中.本章将进一步深入分析和研究元素如何渲染自身. 大 ...

  2. .net core 基于Dapper 的分库分表开源框架(core-data)

    一.前言 感觉很久没写文章了,最近也比较忙,写的相对比较少,抽空分享基于Dapper 的分库分表开源框架core-data的强大功能,更好的提高开发过程中的效率: 在数据库的数据日积月累的积累下,业务 ...

  3. Spring Cloud学习 之 Spring Cloud Hystrix(基础知识铺垫)

    Spring Boot版本:2.1.4.RELEASE Spring Cloud版本:Greenwich.SR1 文章目录 前述: 快速入门: 命令模式: RxJava: 前述: ​ 在微服务架构中, ...

  4. react-redux的理解

    react-redux是辅助redux的,我们正常使用redux是很麻烦的,需要在每个组件中去监听数据变化,执行数据更新等 但是通过react-redux,我们可以简化组件使用公共数据的操作, rea ...

  5. 某科学的PID算法学习笔记

    最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中 ...

  6. x86软路由虚拟化openwrt-koolshare-mod-v2.33联通双拨IPV6教程(第二篇)

    续第一篇:https://www.cnblogs.com/zlAurora/p/12433296.html   4 设置多拨 (1)连入OpenWrt Web界面,默认为192.168.1.1,在“网 ...

  7. 永磁同步电机 spmsm 和 ipmsm 的区别总结

    layout: post tags: [motor control] comments: true 永磁同步电机的分类 永磁同步电机根据转子上永磁体的位置不同,可以分为: 表贴式永磁同步电机--S-P ...

  8. 如何使用apt-get在ubuntu系统上安装OpenJDK 8

    文章目录 添加ppa仓库 设置openjdk版本 查看java 版本 Android 8.1 系统编译的时候需要安装OpenJDK 8,这里如果可以自己下载源码编译安装,当然本想编译Android系统 ...

  9. 浅析Spring中AOP的实现原理——动态代理

    一.前言   最近在复习Spring的相关内容,刚刚大致研究了一下Spring中,AOP的实现原理.这篇博客就来简单地聊一聊Spring的AOP是如何实现的,并通过一个简单的测试用例来验证一下.废话不 ...

  10. .NETcore中使用jwt来对api进行身份验证

    对于 登陆,身份,授权这之类的操作,我们最常用的几种方法无非就是 cookie session token 这三者的差别 https://www.cnblogs.com/moyand/p/904797 ...