在 C/C++ 中, 直接利用 (x + y) >> 1 来计算 \(\left\lfloor {\left( {x + y} \right)/2} \right\rfloor\) (两个整数的平均值并向下取整)以及直接利用 (x + y + 1) >> 1 来计算 \(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) (两个整数的平均值并向上取整)的结果可能有误, 因为 (x + y) >> 1(x + y + 1) >> 1 中的 x + y 可能会发生数值溢出. 而 \(\left\lfloor {\left( {x + y} \right)/2} \right\rfloor\) 和 \(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 的结果是不可能数值溢出的, 这就引发我们思考可不可能通过某种方式来规避平均值计算中的数值溢出.

方式一

利用如下公式

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor = \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lfloor {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rfloor \hfill \\
\left\lceil {\left( {x + y} \right)/2} \right\rceil = \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lceil {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rceil \hfill \\
\end{align}\)

下面是对上述两式的证明:

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor &= \left\{ {\begin{array}{*{20}{c}}
{m + n}&{x = 2m,y = 2n} \\
{m + n}&{x = 2m + 1,y = 2n} \\
{m + n}&{x = 2m,y = 2n + 1} \\
{m + n + 1}&{x = 2m + 1,y = 2n + 1}
\end{array}} \right. \\
&= \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lfloor {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rfloor \\
\end{align}\)

\(\begin{align}
\left\lceil {\left( {x + y} \right)/2} \right\rceil &= \left\{ {\begin{array}{*{20}{c}}
{m + n}&{x = 2m,y = 2n} \\
{m + n + 1}&{x = 2m + 1,y = 2n} \\
{m + n + 1}&{x = 2m,y = 2n + 1} \\
{m + n + 1}&{x = 2m + 1,y = 2n + 1}
\end{array}} \right. \\
&= \left\lfloor {x/2} \right\rfloor + \left\lfloor {y/2} \right\rfloor + \left\lceil {\left( {x\bmod 2 + y\bmod 2} \right)/2} \right\rceil \\
\end{align}\)

其中 \(m,n\) 均为整数.

借用上面的公式可以 \(\left\lfloor {\left( {x + y} \right)/2} \right\rfloor\) 转化为如下的 C/C++ 代码 (据说这段代码还被申请了专利):

(x >> 1) + (y >> 1) + (x & y & 1);

可以将 \(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 转化为如下的 C/C++ 代码:

(x >> 1) + (y >> 1) + ((x | y) & 1);

这两段代码都不会发生数值溢出.

方式二

设 x 和 y 只能取 0 和 1 值, 则:

x y x + y x ^ y x & y x | y 2*(x & y) + (x ^ y) 2*(x | y) - (x ^ y)
0 0 0 0 0 0 0 + 0 = 0 0 - 0 = 0
0 1 1 1 0 1 0 + 1 = 1 10 - 1 = 1
1 0 1 1 0 1 0 + 1 = 1 10 - 1 = 1
1 1 10 0 1 1 10 + 0 = 10 10 - 0 = 10

注意上表中的 10 是二进制下的 10, 即十进制下的 2, & 是逻辑与操作, | 是逻辑或运算, ^ 是逻辑异或操作.

由上表可见 x + y = 2*(x & y) + (x ^ y) = 2*(x | y) - (x ^ y).

无符号整型

对于无符号整型, 设 \(x = \sum\nolimits_{i = 0}^{n - 1} {{u_i}{2^i}}\) 和 \(y = \sum\nolimits_{i = 0}^{n - 1} {{v_i}{2^i}}\), 其中 \(u_i,v_i\in\left\{ 0, 1 \right\}\).

\(\begin{align}
x + y &= \sum\nolimits_{i = 0}^{n - 1} {{u_i}{2^i}} {\text{ + }}\sum\nolimits_{i = 0}^{n - 1} {{v_i}{2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {2 \times \left( {{u_i}\& {v_i}} \right) + \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^i}} \\
\end{align}\)

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor &= \left\lfloor {\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right\rfloor \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} + \sum\nolimits_{i = 1}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} \\
\end{align}\)

上式用 C/C++语言可以表示为:

(x & y) + ((x ^ y) >> 1);

\(\begin{align}
x + y &= \sum\nolimits_{i = 0}^{n - 1} {{u_i}{2^i}} {\text{ + }}\sum\nolimits_{i = 0}^{n - 1} {{v_i}{2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {2 \times \left( {{u_i}|{v_i}} \right) - \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} - \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^i}} \\
\end{align}\)

\(\begin{align}
\left\lceil {\left( {x + y} \right)/2} \right\rceil &= \left\lceil {\sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} - \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right\rceil \\
&= \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} - \sum\nolimits_{i = 1}^{n - 1} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} \\
\end{align}\)

上式用 C/C++ 语言可以表示为:

(x | y) - ((x ^ y) >> 1);

有符号整型

对于有符号整型, 设 \(x = - {u_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{u_i}{2^i}}\) 和 \(y = - {v_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{v_i}{2^i}}\), 其中 \(u_i,v_i\in\left\{ 0, 1 \right\}\).

\(\begin{align}
x + y &= - {u_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{u_i}{2^i}} - {v_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{v_i}{2^i}} \\
&= - \left( {{u_{n - 1}} + {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= - \left( {2 \times \left( {{u_{n - 1}}\& {v_{n - 1}}} \right) + \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right)} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {2 \times \left( {{u_i}\& {v_i}} \right) + \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\left( { - \left( {{u_{n - 1}}\& {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} } \right) + \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^i}} } \right) \\
\end{align}\)

\(\begin{align}
\left\lfloor {\left( {x + y} \right)/2} \right\rfloor &= \left\lfloor {\left( { - \left( {{u_{n - 1}}\& {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} } \right) + \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right)} \right\rfloor \\
&= \left( { - \left( {{u_{n - 1}}\& {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}\& {v_i}} \right){2^i}} } \right) + \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 1}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right) \\
\end{align}\)

上式用 C/C++ 语言可以表示为:

(x & y) + ((x ^ y) >> 1);

\(\begin{align}
x + y &= - {u_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{u_i}{2^i}} - {v_{n - 1}}{2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {{v_i}{2^i}} \\
&= - \left( {{u_{n - 1}} + {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} + {v_i}} \right){2^i}} \\
&= - \left( {2 \times \left( {{u_{n - 1}}|{v_{n - 1}}} \right) - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right)} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {2 \times \left( {{u_i}|{v_i}} \right) - \left( {{u_i} \wedge {v_i}} \right)} \right){2^i}} \\
&= 2\left( { - \left( {{u_{n - 1}}|{v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} } \right) - \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^i}} } \right) \\
\end{align}\)

\(\begin{align}
\left\lceil {\left( {x + y} \right)/2} \right\rceil &= \left\lceil {\left( { - \left( {{u_{n - 1}}|{v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} } \right) - \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 0}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right)} \right\rceil \\
&= \left( { - \left( {{u_{n - 1}}|{v_{n - 1}}} \right){2^{n - 1}} + \sum\nolimits_{i = 0}^{n - 1} {\left( {{u_i}|{v_i}} \right){2^i}} } \right) - \left( { - \left( {{u_{n - 1}} \wedge {v_{n - 1}}} \right){2^{n - 2}} + \sum\nolimits_{i = 1}^{n - 2} {\left( {{u_i} \wedge {v_i}} \right){2^{i - 1}}} } \right) \\
\end{align}\)

上式用 C/C++ 语言可以表示为:

(x | y) - ((x ^ y) >> 1);

综合

综合上面的分析, 可见对于有符号整型和无符号整型,

\(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 都可以用 C/C++ 语言表示为:

(x & y) + ((x ^ y) >> 1);

\(\left\lceil {\left( {x + y} \right)/2} \right\rceil\) 都可以用 C/C++ 语言表示为:

(x | y) - ((x ^ y) >> 1);

参考:

版权声明

版权声明:自由分享,保持署名-非商业用途-非衍生,知识共享3.0协议。

如果你对本文有疑问或建议,欢迎留言!转载请保留版权声明!

如果你觉得本文不错, 也可以用微信赞赏一下哈.

C/C++代码优化之求两个整型的平均值的更多相关文章

  1. swap 用指针交换两个整型数值

  2. c++作业:输入两个整数,用函数求两数之和。函数外部声明有什么作用?

    #include <iostream> using namespace std; int main(){ //求两数的和? int a,b,s; cout<<"请你输 ...

  3. Php数据类型之整型详解

    php中支持的数据类型 在php中主要支持8种数据类型.和3中伪类型的一个形式.8种数据类型分为以下三3大类,第一个就是我们的标量类型,标量类型它只能存储单一数据,那第二大类就是我们的复合类型,第三个 ...

  4. java 整型相除得到浮点型

    public class TestFloatOrDouble { public static void main(String[] args) { Point num1 = new Point(84, ...

  5. python 函数求两个数的最大公约数和最小公倍数

    1. 求最小公倍数的算法: 最小公倍数  =  两个整数的乘积 /  最大公约数 所以我们首先要求出两个整数的最大公约数, 求两个数的最大公约数思路如下: 2. 求最大公约数算法: 1. 整数A对整数 ...

  6. JavaScript求两个数字之间所有数字的和

    这是在fcc上的中级算法中的第一题,拉出来的原因并不是因为有什么好说的,而是我刚看时以为是求两个数字的和, 很显然错了.我感觉自己的文字理解能力被严重鄙视了- -.故拉出来折腾折腾. 要求: 给你一个 ...

  7. [LeetCode] Intersection of Two Linked Lists 求两个链表的交点

    Write a program to find the node at which the intersection of two singly linked lists begins. For ex ...

  8. 求两圆相交部分面积(C++)

    已知两圆圆心坐标和半径,求相交部分面积: #include <iostream> using namespace std; #include<cmath> #include&l ...

  9. 面试问题2:给一个5G的大文件,保存的数据为32位的整型,找到所有出现次数超过两次的数字

    问题描述:给一个5G的大文件,保存的数据为32位的整型,找到所有出现次数超过两次的数字 大数据操作: 解决方法一: 依次遍历文件数据, 开始32二进制清0 每次读取一个数,先和二进制位与,如果为0 则 ...

随机推荐

  1. Web 跨域请求问题的解决方案- CORS 方案

    1.什么是跨域 跨域是指跨域名的访问,以下情况都属于跨域: 跨域现象 实例 域名不相同 www.baidu.com与www.taobao 一级域名相同,但是端口不相同 www.baidu.com:80 ...

  2. 01-Taro打造hello-world应用

    01-Taro打造hello-world应用 一.简介 Taro是由京东凹凸实验室出品,书写一套代码通过 Taro 的编译工具,将源代码分别编译出可以在不同端(微信 / 京东 / 百度 / 支付宝 / ...

  3. JS实现手机号码中间4位变星号

    这个问题,我们可以用截取字符串解决,以下我列出2种方法,小伙伴们可以根据自己的需要选择哦: ● 1,substring()方法用于提取字符串中介于两个指定下标之间的字符. '; //该号码是乱打出来的 ...

  4. 配置centos7 java环境

    一.环境 centos7 jdk-8u231-linux-x64.tar.gz 二.安装jdk 使用ftp或者 WinScp软件把下载在win10电脑上的jdk安装包上传到linux 解压到/opt/ ...

  5. 盘点6个Kubernetes监视工具

    导读:监控可帮助您确保Kubernetes应用程序平稳运行并排除可能出现的任何问题.Prometheus是一种流行的开源监视工具,许多公司都使用它来监视其IT基础结构.但是,还有许多其他监视工具可用. ...

  6. gets() 、 getchar() 、 getch() 、getche()、gets()、 scanf()的区别

    1.getchar().getche().getch() (1).getchar 函数用于从标准输入设备键盘读入单个字符,返回表示读入字符的ASCII码值,并在屏上显示该字符:头文件是 stdio.h ...

  7. 【SMB源码解析系列】——002.RESET中断

    跟随代码结尾处的中断向量,我们可以看到RESET中断所在地址为Start标签处. 这部分代码比较简单,从字面便可基本理解. 1.(682~683)状态寄存器设置,sei指令用于禁用IRQ中断,SMB中 ...

  8. git:error: Your local changes to the following files would be overwritten by merge:

    最近用git在服务器.github.本地更新代码的时候,因为频繁修改偶尔出现这个错误 覆盖本地的代码: git stash git pull git stash pop 保留对服务器上的修改: git ...

  9. centOS 开启服务器后无法访问(大坑啊)

    在开启了nodejs后,发现虽然ssh访问到主机,但是公网不能访问. 一番调试发现程序是正常的,也确实在监听着端口.折腾良久无果,在Vultr上发帖求助.几分钟后Vultr团队的工程师Joshua B ...

  10. Paxos made simple 翻译尝试

    [这篇论文我翻译下来,首先感觉还是不好懂,很多地方结论的得出不够清楚,需要读者自己思考其中的原因.要理解Paxos算法,个人建议先搜索下介绍算法的中文文章,大致了解下Paxos算法要做什么,然后就再读 ...