题意:给定每个人所喜欢的食物和饮料种类以及每种食物和饮料的数量,一个人需要一种食物和一种饮料(数量为1即可),问最多满足多少人的需要

思路:由于食物和饮料对于人来说需要同时满足,它们是“与”的关系,所以建模时需要放在不同的层,另外如果把人放在根,食物和饮料依次放后面,则每个人会扩展出f*d个节点出来,边数有f*d条,而如果把人放中间,类似于“双向广搜”的原理,层数减半,边数大大减少。具体来说,从源点向每种食物连边,容量为其数量,如果某个人喜欢某种食物,则从食物向人连边,容量为1,为了限制人只能选择一个食物和饮料,需要人为地加n个新节点与每个人一一对应,从人向其所对应的新节点连一条容量为1的边,然后向喜欢的饮料各连一条容量为1的边,最后连回汇点,容量为饮料数量。图如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
/* ******************************************************************************** */
#include <iostream>                                                                 //
#include <cstdio>                                                                   //
#include <cmath>                                                                    //
#include <cstdlib>                                                                  //
#include <cstring>                                                                  //
#include <vector>                                                                   //
#include <ctime>                                                                    //
#include <deque>                                                                    //
#include <queue>                                                                    //
#include <algorithm>                                                                //
#include <map>                                                                      //
using namespace std;                                                                //
                                                                                    //
#define pb push_back                                                                //
#define mp make_pair                                                                //
#define X first                                                                     //
#define Y second                                                                    //
#define all(a) (a).begin(), (a).end()                                               //
#define foreach(a, i) for (typeof(a.begin()) i = a.begin(); i != a.end(); ++ i)     //
#define fill(a, x) memset(a, x, sizeof(a))                                          //
                                                                                    //
void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);}    //
void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R>                    //
void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1;          //
while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T>      //
void print(const T t){cout<<t<<endl;}template<typename F,typename...R>              //
void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T>   //
void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;}   //
                                                                                    //
typedef pair<intint> pii;                                                         //
typedef long long ll;                                                               //
typedef unsigned long long ull;                                                     //
                                                                                    //
template<typename T>bool umax(T&a, const T&b){return b>a?false:(a=b,true);}         //
template<typename T>bool umin(T&a, const T&b){return b<a?false:(a=b,true);}         //
template<typename T>                                                                //
void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];}            //
template<typename T>                                                                //
void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];}            //
                                                                                    //
/* -------------------------------------------------------------------------------- */
 
 
struct Dinic {
private:
    const static int maxn = 800 + 7;
    struct Edge {
        int from, to, cap;
        Edge(int u, int v, int w): from(u), to(v), cap(w) {}
    };
    int s, t;
    vector<Edge> edges;
    vector<int> G[maxn];
    bool vis[maxn];
    int d[maxn], cur[maxn];
 
    bool bfs() {
        memset(vis, 0, sizeof(vis));
        queue<int> Q;
        Q.push(s);
        d[s] = 0;
        vis[s] = true;
        while (!Q.empty()) {
            int x = Q.front(); Q.pop();
            for (int i = 0; i < G[x].size(); i ++) {
                Edge &e = edges[G[x][i]];
                if (!vis[e.to] && e.cap) {
                    vis[e.to] = true;
                    d[e.to] = d[x] + 1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];
    }
    int dfs(int x, int a) {
        if (x == t || a == 0) return a;
        int flow = 0, f;
        for (int &i = cur[x]; i < G[x].size(); i ++) {
            Edge &e = edges[G[x][i]];
            if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap))) > 0) {
                e.cap -= f;
                edges[G[x][i] ^ 1].cap += f;
                flow += f;
                a -= f;
                if (a == 0) break;
            }
        }
        return flow;
    }
 
public:
    void clear() {
        for (int i = 0; i < maxn; i ++) G[i].clear();
        edges.clear();
        memset(d, 0, sizeof(d));
    }
    void add(int from, int to, int cap) {
        edges.push_back(Edge(from, to, cap));
        edges.push_back(Edge(to, from, 0));
        int m = edges.size();
        G[from].push_back(m - 2);
        G[to].push_back(m - 1);
    }
 
    int solve(int s, int t) {
        this->s = s; this->t = t;
        int flow = 0;
        while (bfs()) {
            memset(cur, 0, sizeof(cur));
            flow += dfs(s, 1e9);
        }
        return flow;
    }
 
};
Dinic solver;
const int maxn = 207;
int cf[maxn], cd[maxn];
bool likef[maxn][maxn], liked[maxn][maxn];
 
int main() {
#ifndef ONLINE_JUDGE
    freopen("in.txt""r", stdin);
#endif // ONLINE_JUDGE
    int n, f, d;
    while (cin >> n >> f >> d) {
        RI(cf + 1, cf + 1 + f);
        RI(cd + 1, cd + 1 + d);
        for (int i = 1; i <= n; i ++) {
            char s[234];
            scanf("%s", s);
            for (int j = 0; j < f; j ++) {
                likef[i][j + 1] = s[j] == 'Y';
            }
        }
        for (int i = 1; i <= n; i ++) {
            char s[234];
            scanf("%s", s);
            for (int j = 0; j < d; j ++) {
                liked[i][j + 1] = s[j] == 'Y';
            }
        }
        solver.clear();
        for (int i = 1; i <= f; i ++) {
            solver.add(0, i, cf[i]);
        }
        for (int i = 1; i <= n; i ++) {
            for (int j = 1; j <= f; j ++) {
                if (likef[i][j]) solver.add(j, f + i, 1);
            }
        }
        for (int i = 1; i <= n; i ++) {
            solver.add(f + i, f + n + i, 1);
        }
        for (int i = 1; i <= n; i ++) {
            for (int j = 1; j <= d; j ++) {
                if (liked[i][j]) solver.add(f + n + i, f + n + n + j, 1);
            }
        }
        for (int i = 1; i <= d; i ++) {
            solver.add(f + n + n + i, f + n + n + d + 1, cd[i]);
        }
        cout << solver.solve(0, f + n + n + d + 1) << endl;
    }
    return 0;                                                                       //
}                                                                                   //
                                                                                    //
                                                                                    //
                                                                                    //
/* ******************************************************************************** */

[hdu4292]最大流,拆点的更多相关文章

  1. poj 3498 March of the Penguins(最大流+拆点)

    题目大意:在南极生活着一些企鹅,这些企鹅站在一些冰块上,现在要让这些企鹅都跳到同一个冰块上.但是企鹅有最大的跳跃距离,每只企鹅从冰块上跳走时会给冰块造成损害,因此企鹅跳离每个冰块都有次数限制.找出企鹅 ...

  2. poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap

    poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...

  3. HDU4292 Food —— 最大流 + 拆点

    题目链接:https://vjudge.net/problem/HDU-4292 Food Time Limit: 2000/1000 MS (Java/Others)    Memory Limit ...

  4. hdu4289 最小割最大流 (拆点最大流)

    最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...

  5. BZOJ-1877 晨跑 最小费用最大流+拆点

    其实我是不想做这种水题的QWQ,没办法,剧情需要 1877: [SDOI2009]晨跑 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 1704 Solve ...

  6. BZOJ-1070 修车 最小费用最大流+拆点+略坑建图

    1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3624 Solved: 1452 [Submit][Status] ...

  7. hdu 4289 最大流拆点

    大致题意:     给出一个又n个点,m条边组成的无向图.给出两个点s,t.对于图中的每个点,去掉这个点都需要一定的花费.求至少多少花费才能使得s和t之间不连通. 大致思路:     最基础的拆点最大 ...

  8. 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】

    题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...

  9. UVA-11613 Acme Corporation (最大费用最大流+拆点)

    题目大意:有一种商品X,其每每单位存放一个月的代价I固定.并且已知其每月的最大生产量.生产每单位的的代价.最大销售量和销售单价,还已知每个月生产的X能最多能存放的时间(以月为单位).问只考虑前m个月, ...

随机推荐

  1. yzmsb_test.py

    识别诺诺金服页面的验证码,并自动登录到后台. #导包 from selenium import webdriver from PIL import Image, ImageDraw from time ...

  2. 详解 Collections类

    (请关注 本人"集合总集篇"博文--<详解 集合框架>) 有的同学可能会有这样的疑问 -- Collections类也是集合吗? 答曰:非也! 那为什么要讲解这个类呢? ...

  3. 《并发编程的艺术》阅读笔记之Sychronized

    概述 在JDK1.6中,锁一共四种状态,级别由低到高依次是:无锁状态.偏向锁状态.轻量级锁状态和重量级锁状态.锁可以升级但不能降级,这是为了提高获得锁和释放锁的效率.只有重量级锁涉及到操作系统线程切换 ...

  4. java集合List

    需求:List集合存储字符串并遍历.List集合的特点: 有序(存储和取出的元素一致),可重复的.package javatest; import java.util.ArrayList;import ...

  5. Calendar日历类

    package com.yhqtv.demo02.ThreadPool; import java.util.Calendar; import java.util.Date; /* * java.uti ...

  6. web自动化中pytest框架的使用(二)---参数化

    1.pytest--参数化 在测试用例的前面加上@pytest.mark.parametrize("参数名",列表数据) 参数名:用来接收每一项数据,并作为测试用例的参数 列表数据 ...

  7. <cstring>中常用的两个函数memset()和memcpy()

    <cstring>是c++对c中的<string.h>进行了重写,这两个头文件中的函数用法是一样的,所以在用的时候包含哪个头文件都行.下面介绍一下 <cstring> ...

  8. MySql id 设定为主键不自增后,再给 sort 字段增加自增属性

    需求 id 已经被设置为主键,但是没有给它设置 自增 属性.sort 起到一个排序的作用,需要给它设置一个 自增 属性 加自增属性的前提 表中的属性没有增加自增 赋予自增属性的字段,必须带有 索引 S ...

  9. if __name__ == '__main__'到底是什么?

    引子 要搞清楚这个问题,可以先听一个故事~~~ 像我们做事一样,都需要一个起始点,终点存在与否无关紧要.编程也是一样,任何程序都有一个入口,在所谓的静态编译语言中,如Java的入口是一个名字叫做Mai ...

  10. Java9新特性系列(module&maven&starter)

    上篇已经深入分析了Java9中的模块化,有读者又提到了module与starter是什么关系?本篇将进行分析. 首先先回顾下module与maven/gradle的关系: module与maven/g ...