[hdu4292]最大流,拆点
题意:给定每个人所喜欢的食物和饮料种类以及每种食物和饮料的数量,一个人需要一种食物和一种饮料(数量为1即可),问最多满足多少人的需要
思路:由于食物和饮料对于人来说需要同时满足,它们是“与”的关系,所以建模时需要放在不同的层,另外如果把人放在根,食物和饮料依次放后面,则每个人会扩展出f*d个节点出来,边数有f*d条,而如果把人放中间,类似于“双向广搜”的原理,层数减半,边数大大减少。具体来说,从源点向每种食物连边,容量为其数量,如果某个人喜欢某种食物,则从食物向人连边,容量为1,为了限制人只能选择一个食物和饮料,需要人为地加n个新节点与每个人一一对应,从人向其所对应的新节点连一条容量为1的边,然后向喜欢的饮料各连一条容量为1的边,最后连回汇点,容量为饮料数量。图如下:

|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
|
/* ******************************************************************************** */#include <iostream> //#include <cstdio> //#include <cmath> //#include <cstdlib> //#include <cstring> //#include <vector> //#include <ctime> //#include <deque> //#include <queue> //#include <algorithm> //#include <map> //using namespace std; // //#define pb push_back //#define mp make_pair //#define X first //#define Y second //#define all(a) (a).begin(), (a).end() //#define foreach(a, i) for (typeof(a.begin()) i = a.begin(); i != a.end(); ++ i) //#define fill(a, x) memset(a, x, sizeof(a)) // //void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);} //void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R> //void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1; //while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T> //void print(const T t){cout<<t<<endl;}template<typename F,typename...R> //void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T> //void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;} // //typedef pair<int, int> pii; //typedef long long ll; //typedef unsigned long long ull; // //template<typename T>bool umax(T&a, const T&b){return b>a?false:(a=b,true);} //template<typename T>bool umin(T&a, const T&b){return b<a?false:(a=b,true);} //template<typename T> //void V2A(T a[],const vector<T>&b){for(int i=0;i<b.size();i++)a[i]=b[i];} //template<typename T> //void A2V(vector<T>&a,const T b[]){for(int i=0;i<a.size();i++)a[i]=b[i];} // ///* -------------------------------------------------------------------------------- */struct Dinic {private: const static int maxn = 800 + 7; struct Edge { int from, to, cap; Edge(int u, int v, int w): from(u), to(v), cap(w) {} }; int s, t; vector<Edge> edges; vector<int> G[maxn]; bool vis[maxn]; int d[maxn], cur[maxn]; bool bfs() { memset(vis, 0, sizeof(vis)); queue<int> Q; Q.push(s); d[s] = 0; vis[s] = true; while (!Q.empty()) { int x = Q.front(); Q.pop(); for (int i = 0; i < G[x].size(); i ++) { Edge &e = edges[G[x][i]]; if (!vis[e.to] && e.cap) { vis[e.to] = true; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vis[t]; } int dfs(int x, int a) { if (x == t || a == 0) return a; int flow = 0, f; for (int &i = cur[x]; i < G[x].size(); i ++) { Edge &e = edges[G[x][i]]; if (d[x] + 1 == d[e.to] && (f = dfs(e.to, min(a, e.cap))) > 0) { e.cap -= f; edges[G[x][i] ^ 1].cap += f; flow += f; a -= f; if (a == 0) break; } } return flow; }public: void clear() { for (int i = 0; i < maxn; i ++) G[i].clear(); edges.clear(); memset(d, 0, sizeof(d)); } void add(int from, int to, int cap) { edges.push_back(Edge(from, to, cap)); edges.push_back(Edge(to, from, 0)); int m = edges.size(); G[from].push_back(m - 2); G[to].push_back(m - 1); } int solve(int s, int t) { this->s = s; this->t = t; int flow = 0; while (bfs()) { memset(cur, 0, sizeof(cur)); flow += dfs(s, 1e9); } return flow; }};Dinic solver;const int maxn = 207;int cf[maxn], cd[maxn];bool likef[maxn][maxn], liked[maxn][maxn];int main() {#ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin);#endif // ONLINE_JUDGE int n, f, d; while (cin >> n >> f >> d) { RI(cf + 1, cf + 1 + f); RI(cd + 1, cd + 1 + d); for (int i = 1; i <= n; i ++) { char s[234]; scanf("%s", s); for (int j = 0; j < f; j ++) { likef[i][j + 1] = s[j] == 'Y'; } } for (int i = 1; i <= n; i ++) { char s[234]; scanf("%s", s); for (int j = 0; j < d; j ++) { liked[i][j + 1] = s[j] == 'Y'; } } solver.clear(); for (int i = 1; i <= f; i ++) { solver.add(0, i, cf[i]); } for (int i = 1; i <= n; i ++) { for (int j = 1; j <= f; j ++) { if (likef[i][j]) solver.add(j, f + i, 1); } } for (int i = 1; i <= n; i ++) { solver.add(f + i, f + n + i, 1); } for (int i = 1; i <= n; i ++) { for (int j = 1; j <= d; j ++) { if (liked[i][j]) solver.add(f + n + i, f + n + n + j, 1); } } for (int i = 1; i <= d; i ++) { solver.add(f + n + n + i, f + n + n + d + 1, cd[i]); } cout << solver.solve(0, f + n + n + d + 1) << endl; } return 0; //} // // // ///* ******************************************************************************** */ |
[hdu4292]最大流,拆点的更多相关文章
- poj 3498 March of the Penguins(最大流+拆点)
题目大意:在南极生活着一些企鹅,这些企鹅站在一些冰块上,现在要让这些企鹅都跳到同一个冰块上.但是企鹅有最大的跳跃距离,每只企鹅从冰块上跳走时会给冰块造成损害,因此企鹅跳离每个冰块都有次数限制.找出企鹅 ...
- poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分, dinic, isap
poj 2391 Ombrophobic Bovines, 最大流, 拆点, 二分 dinic /* * Author: yew1eb * Created Time: 2014年10月31日 星期五 ...
- HDU4292 Food —— 最大流 + 拆点
题目链接:https://vjudge.net/problem/HDU-4292 Food Time Limit: 2000/1000 MS (Java/Others) Memory Limit ...
- hdu4289 最小割最大流 (拆点最大流)
最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...
- BZOJ-1877 晨跑 最小费用最大流+拆点
其实我是不想做这种水题的QWQ,没办法,剧情需要 1877: [SDOI2009]晨跑 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 1704 Solve ...
- BZOJ-1070 修车 最小费用最大流+拆点+略坑建图
1070: [SCOI2007]修车 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3624 Solved: 1452 [Submit][Status] ...
- hdu 4289 最大流拆点
大致题意: 给出一个又n个点,m条边组成的无向图.给出两个点s,t.对于图中的每个点,去掉这个点都需要一定的花费.求至少多少花费才能使得s和t之间不连通. 大致思路: 最基础的拆点最大 ...
- 洛谷 P2764 最小路径覆盖问题【最大流+拆点+路径输出】
题目链接:https://www.luogu.org/problemnew/show/P2764 题目描述 «问题描述: 给定有向图G=(V,E).设P 是G 的一个简单路(顶点不相交)的集合.如果V ...
- UVA-11613 Acme Corporation (最大费用最大流+拆点)
题目大意:有一种商品X,其每每单位存放一个月的代价I固定.并且已知其每月的最大生产量.生产每单位的的代价.最大销售量和销售单价,还已知每个月生产的X能最多能存放的时间(以月为单位).问只考虑前m个月, ...
随机推荐
- vue2.x学习笔记(六)
接着前面的内容:https://www.cnblogs.com/yanggb/p/12571171.html. class与style绑定 操作元素的class列表和内联样式,是数据绑定的一个常见需求 ...
- 浅析 CSS 中的边距重叠
浅析 CSS 中的边距重叠 边距重叠是什么 在说边距重叠之前,先以正常的思维来考虑如果你现在是浏览器引擎遇到这种情况应该怎么办? 现在有两个元素 div1 和 div2 紧挨着,中间没有它元素,它们的 ...
- EF-三种映射
更改实体的类名称,字段名称,来映射表名称,表字段. 1,用EF自带的特性方式: 直接加上特性,更新对应的类名,字段名以及引用类,字段名的相关地方 2,参考NHibernate建立一个EF自带的映射 ...
- EasyPoi 导入导出Excel时使用GroupName的踩坑解决过程
一.开发功能介绍: 简单的一个excel导入功能 二.Excel导入模板(大致模板没写全): 姓名 性别 生日 客户分类 联系人姓名 联系人部门 备注 材料 综合 采购 张三 男 1994/05/25 ...
- php 对象的调用和引入
直接上实例: 定义: <?php namespace app\php; class a { ; public function index() { echo "; } static f ...
- 取 token 并查看 container 信息
curl -i -k \ -H "Content-Type: application/json" \ -d ' { "auth": { "identi ...
- Deep Snake : 基于轮廓调整的SOTA实例分割方法,速度32.3fps | CVPR 2020
论文提出基于轮廓的实例分割方法Deep snake,轮廓调整是个很不错的方向,引入循环卷积,不仅提升了性能还减少了计算量,保持了实时性,但是Deep snake的大体结构不够优雅,应该还有一些工作可以 ...
- QT踩坑记录1-Q_OBJECT编译问题
QT踩坑记录1-Q_OBJECT编译问题 QTC++Bugs 错误输出 Q_OBJECT 宏错误的地方会编译出现这样的错误, 无法找到.... 由于自己不想再看到这个错误, 此处 复制自 参考连接1, ...
- 在java中使用JMH(Java Microbenchmark Harness)做性能测试
文章目录 使用JMH做性能测试 BenchmarkMode Fork和Warmup State和Scope 在java中使用JMH(Java Microbenchmark Harness)做性能测试 ...
- 【JAVA基础】02 Java基础语法
一.内容 注释 关键字 标识符 常量.进制和进制转换 变量 数据类型和类型转换 运算符 语句 二.注释 注释概述 用于解释说明程序的文字 Java中注释分类格式 单行注释 格式://注释文字 多行注释 ...