OpenCV-Python 直方图-4:直方图反投影 | 二十九
目标
在本章中,我们将学习直方图反投影。
理论
这是由Michael J. Swain和Dana H. Ballard在他们的论文《通过颜色直方图索引》中提出的。
用简单的话说是什么意思?它用于图像分割或在图像中查找感兴趣的对象。简而言之,它创建的图像大小与输入图像相同(但只有一个通道),其中每个像素对应于该像素属于我们物体的概率。用更简单的话来说,与其余部分相比,输出图像将在可能有对象的区域具有更多的白色值。好吧,这是一个直观的解释。(我无法使其更简单)。直方图反投影与camshift算法等配合使用。
我们该怎么做呢?我们创建一个图像的直方图,其中包含我们感兴趣的对象(在我们的示例中是背景,离开播放器等)。对象应尽可能填充图像以获得更好的效果。而且颜色直方图比灰度直方图更可取,因为对象的颜色对比灰度强度是定义对象的好方法。然后,我们将该直方图“反投影”到需要找到对象的测试图像上,换句话说,我们计算出属于背景的每个像素的概率并将其显示出来。在适当的阈值下产生的输出使我们仅获得背景。
Numpy中的算法
- 首先,我们需要计算我们要查找的对象(使其为“ M”)和要搜索的图像(使其为“ I”)的颜色直方图。
import numpy as np
import cv2 as cvfrom matplotlib import pyplot as plt
#roi是我们需要找到的对象或对象区域
roi = cv.imread('rose_red.png')
hsv = cv.cvtColor(roi,cv.COLOR_BGR2HSV)
#目标是我们搜索的图像
target = cv.imread('rose.png')
hsvt = cv.cvtColor(target,cv.COLOR_BGR2HSV)
# 使用calcHist查找直方图。也可以使用np.histogram2d完成
M = cv.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
I = cv.calcHist([hsvt],[0, 1], None, [180, 256], [0, 180, 0, 256] )
- 求出比值R=MIR = \frac{M}{I}R=IM。然后反向投影R,即使用R作为调色板,并以每个像素作为其对应的目标概率创建一个新图像。即
B(x,y) = R[h(x,y),s(x,y)]
其中h是色调,s是像素在(x,y)的饱和度。之后,应用条件B(x,y)=min[B(x,y),1]B(x,y) = min[B(x,y), 1]B(x,y)=min[B(x,y),1]。
h,s,v = cv.split(hsvt)
B = R[h.ravel(),s.ravel()]
B = np.minimum(B,1)
B = B.reshape(hsvt.shape[:2])
- 现在对圆盘应用卷积,B=D∗BB = D \ast BB=D∗B,其中D是圆盘内核。
disc = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
cv.filter2D(B,-1,disc,B)
B = np.uint8(B)
cv.normalize(B,B,0,255,cv.NORM_MINMAX)
- 现在最大强度的位置给了我们物体的位置。如果我们期望图像中有一个区域,则对合适的值进行阈值处理将获得不错的结果。
ret,thresh = cv.threshold(B,50,255,0)
就是这样!!
OpenCV的反投影
OpenCV提供了一个内建的函数cv.calcBackProject()。它的参数几乎与cv.calchist()函数相同。它的一个参数是直方图,也就是物体的直方图,我们必须找到它。另外,在传递给backproject函数之前,应该对对象直方图进行归一化。它返回概率图像。然后我们用圆盘内核对图像进行卷积并应用阈值。下面是我的代码和结果:
import numpy as np
import cv2 as cv
roi = cv.imread('rose_red.png')
hsv = cv.cvtColor(roi,cv.COLOR_BGR2HSV)
target = cv.imread('rose.png')
hsvt = cv.cvtColor(target,cv.COLOR_BGR2HSV)
# 计算对象的直方图
roihist = cv.calcHist([hsv],[0, 1], None, [180, 256], [0, 180, 0, 256] )
# 直方图归一化并利用反传算法
cv.normalize(roihist,roihist,0,255,cv.NORM_MINMAX)
dst = cv.calcBackProject([hsvt],[0,1],roihist,[0,180,0,256],1)
# 用圆盘进行卷积
disc = cv.getStructuringElement(cv.MORPH_ELLIPSE,(5,5))
cv.filter2D(dst,-1,disc,dst)
# 应用阈值作与操作
ret,thresh = cv.threshold(dst,50,255,0)
thresh = cv.merge((thresh,thresh,thresh))
res = cv.bitwise_and(target,thresh)
res = np.vstack((target,thresh,res))
cv.imwrite('res.jpg',res)
以下是我处理过的一个示例。我将蓝色矩形内的区域用作示例对象,我想提取整个地面。
附加资源
- “Indexing via color histograms”, Swain, Michael J. , Third international conference on computer vision,1990.
欢迎关注磐创博客资源汇总站:
http://docs.panchuang.net/
欢迎关注PyTorch官方中文教程站:
http://pytorch.panchuang.net/
OpenCV中文官方文档:
http://woshicver.com/
OpenCV-Python 直方图-4:直方图反投影 | 二十九的更多相关文章
- Python学习之旅(二十九)
Python基础知识(28):常用第三方模块 一.Pillow PIL(Python Imaging Library):提供了强大的图像操作功能,可以通过简单的代码完成复杂的图像处理,是Python平 ...
- 第三百二十九节,web爬虫讲解2—urllib库爬虫—ip代理—用户代理和ip代理结合应用
第三百二十九节,web爬虫讲解2—urllib库爬虫—ip代理 使用IP代理 ProxyHandler()格式化IP,第一个参数,请求目标可能是http或者https,对应设置build_opener ...
- 剑指Offer(二十九):最小的K个数
剑指Offer(二十九):最小的K个数 搜索微信公众号:'AI-ming3526'或者'计算机视觉这件小事' 获取更多算法.机器学习干货 csdn:https://blog.csdn.net/baid ...
- Bootstrap <基础二十九>面板(Panels)
Bootstrap 面板(Panels).面板组件用于把 DOM 组件插入到一个盒子中.创建一个基本的面板,只需要向 <div> 元素添加 class .panel 和 class .pa ...
- Web 开发人员和设计师必读文章推荐【系列二十九】
<Web 前端开发精华文章推荐>2014年第8期(总第29期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- WCF技术剖析之二十九:换种不同的方式调用WCF服务[提供源代码下载]
原文:WCF技术剖析之二十九:换种不同的方式调用WCF服务[提供源代码下载] 我们有两种典型的WCF调用方式:通过SvcUtil.exe(或者添加Web引用)导入发布的服务元数据生成服务代理相关的代码 ...
- VMwarevSphere 服务器虚拟化之二十九 桌面虚拟化之安装View副本服务器
VMwarevSphere 服务器虚拟化之二十九 桌面虚拟化之安装View副本服务器 VMware View中高可用性可是一个必须要考虑的问题.在整个虚拟桌面环境中View Connection S ...
- Bootstrap入门(二十九)JS插件6:弹出框
Bootstrap入门(二十九)JS插件6:弹出框 加入小覆盖的内容,像在iPad上,用于存放非主要信息 弹出框是依赖于工具提示插件的,那它也和工具提示是一样的,是需要初始化才能够使用的 首先我们引入 ...
- mysql进阶(二十九)常用函数
mysql进阶(二十九)常用函数 一.数学函数 ABS(x) 返回x的绝对值 BIN(x) 返回x的二进制(OCT返回八进制,HEX返回十六进制) CEILING(x) 返回大于x的最小整数值 EXP ...
随机推荐
- linux tc流量控制
tc流量控制 项目背景 vintage3.0接口lookupforupdage增加一个策略,当带宽流量tx或rx超过40%,75%随机返回304:超过60%,此接口均返回304 为了对测试机器进行流量 ...
- 基于Noisy Channel Model和Viterbi算法的词性标注问题
给定一个英文语料库,里面有很多句子,已经做好了分词,/前面的是词,后面的表示该词的词性并且每句话由句号分隔,如下图所示 对于一个句子S,句子中每个词语\(w_i\)标注了对应的词性\(z_i\).现在 ...
- 沪江iKcamp出品微信小程序教学共5章16小节汇总(含视频)
- 第一篇:解析Linux是什么?能干什么?它的应用领域!
不得不说的前言(不看完睡觉会尿床):饿货们~!你说你们上学都学了点啥?这不懂那也不懂,快毕业了啥也不会.专业课程不学好毕业了也找不到好工作.爸妈给你养大,投资了多少钱.你毕业后随便找了个什么鸡毛工作开 ...
- 软件WEB自动化测试工具之智能元素定位
江湖一直有着这么一句名言“天下武功,唯快不破".那么在软件测试领域,自然而然我们会想到软件自动化测试.软件自动化测试的实现自然离不开软件自动化测试工具.软件自动化测试工具是软件自动化的载体, ...
- LoadRunner初入门(安装)
在经过了两天网上找软件-真机上装软件-完了发现真机不能用(不能用的原因就是IE不能打开 试了很多方法现在真机上的ie变成了ie8英文版),果断用上了虚拟机 虚拟机刚开始要装镜像 一开始下的是64位的发 ...
- flask 部署外部访问
在 app.run(host='0.0.0.0',port=5000) 可以让外部客户端进行访问,访问地址是flask服务器的ip地址和你设置的端口(端口注意不要占用其他端口,如果是阿里云有可能要设置 ...
- opt目录
在linux环境测试时,会部署到/opt目录下,这是为何呢? 下面来详解Linux的/opt目录: /opt:用户级的程序目录 这里主要存放那些可选的程序. 比如,你想部署firefox测试版,那就装 ...
- IPv6 时代如何防御 DDoS 攻击?
在互联网世界,每台联网的设备都被分配了一个用于标识和位置定义的 IP 地址.20 世纪 90 年代以来互联网的快速发展,联网设备所需的地址远远多于可用 IPv4 地址的数量,导致了 IPv4 地址耗尽 ...
- 五分钟学Java:如何学习Java面试必考的网络编程
原创声明 本文作者:黄小斜 转载请务必在文章开头注明出处和作者. 本文思维导图 简介 Java作为一门后端语言,对于网络编程的支持是必不可少的,但是,作为一个经常CRUD的Java工程师,很多时候都不 ...