1. Dijkstra算法

1.1 定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

1.2 算法描述

1)算法思想:

设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行动画过程如下图

1.3 算法代码实现

const int  MAXINT = ;
const int MAXNUM = ;
int dist[MAXNUM];
int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0)
{
  bool S[MAXNUM]; // 判断是否已存入该点到S集合中
int n=MAXNUM;
  for(int i=; i<=n; ++i)
   {
  dist[i] = A[v0][i];
  S[i] = false; // 初始都未用过该点
  if(dist[i] == MAXINT)
  prev[i] = -;
   else
  prev[i] = v0;
  }
  dist[v0] = ;
  S[v0] = true;   
   for(int i=; i<=n; i++)
   {
  int mindist = MAXINT;
  int u = v0;    // 找出当前未使用的点j的dist[j]最小值
   for(int j=; j<=n; ++j)
   if((!S[j]) && dist[j]<mindist)
   {
   u = j; // u保存当前邻接点中距离最小的点的号码
    mindist = dist[j];
   }
  S[u] = true;
  for(int j=; j<=n; j++)
   if((!S[j]) && A[u][j]<MAXINT)
   {
   if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径
   {
  dist[j] = dist[u] + A[u][j]; //更新dist
  prev[j] = u; //记录前驱顶点
   }
   }
  }
}

1.4 算法实例

先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

2. Floyd算法

2.1 定义概述

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

2.2 算法描述

1)算法思想原理:

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果

2.3 算法代码实现

typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph;

void Floyd(MGraph g)
{
  int A[MAXV][MAXV];
  int path[MAXV][MAXV];
  int i,j,k,n=g.n;
  for(i=;i<n;i++)
  for(j=;j<n;j++)
  {   
A[i][j]=g.edges[i][j];
   path[i][j]=-;
  }
  for(k=;k<n;k++)
  {
  for(i=;i<n;i++)
  for(j=;j<n;j++)
  if(A[i][j]>(A[i][k]+A[k][j]))
  {
  A[i][j]=A[i][k]+A[k][j];
  path[i][j]=k;
  }
 }
}

算法时间复杂度:O(n3)

转载于https://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html

Dijkstra与Floyd算法的更多相关文章

  1. 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法

    图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...

  2. Dijkstra and Floyd算法

    Dijkstra算法 算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集 ...

  3. Dijkstra和Floyd算法

    #include #include #include #define Infinity 999 //最大值 #define Max_Vertex_Num 20 //顶点数最多为20 #define L ...

  4. 图的最短路径——dijkstra算法和Floyd算法

    dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...

  5. (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍

    这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: / ...

  6. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  7. 最短路径---Dijkstra/Floyd算法

    1.Dijkstra算法基础: 算法过程比prim算法稍微多一点步骤,但思想确实巧妙也是贪心,目的是求某个源点到目的点的最短距离,总的来说dijkstra也就是求某个源点到目的点的最短路,求解的过程也 ...

  8. 最短路径—大话Dijkstra算法和Floyd算法

    Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , ...

  9. Dijkstra 算法、Kruskal 算法、Prim算法、floyd算法

    1.dijkstra算法 算最短路径的,算法解决的是有向图中单个源点到其他顶点的最短路径问题. 初始化n*n的数组. 2.kruskal算法 算最小生成树的,按权值加入 3.Prim算法 类似dijk ...

随机推荐

  1. python基础数据类型--集合(set)

    python基础数据类型--集合(set) 集合是一个数学概念由一个或多个确定的元素所构成的整体叫做集合 集合中的三个特征 1.确定性(元素必须死可hash) 2.互异性(去重) 3.无序性(集合中的 ...

  2. NO11 SSH故障排查思路和netstat命令

    本章知识相关考试:1.企业场景面试题:Linux系统如何优化?2.企业场景面试题:SSH服务连不上,如何排查?记住回答技巧: 1 ping  2 telnet 客户端ssh工具:SecureCRT,x ...

  3. Exchange 导出用户邮箱

    应用场景: 1.需要把某个用户的邮箱内容全部导出来,提供给审计或监察部门. 2.跨平台的迁移,从第三方的邮件系统迁移到exchange.其中一种迁移方式就是把用户批量导出为PST,然后在exchang ...

  4. HTML的文档结构与语法(一)

    一.走进Web开发 Web运行的原理: 二.HTML 1.1什么是html HTML是用来描述网页的一种语言 HTML指的是超文本标记语言(Hyper Text Markup Language) 超文 ...

  5. 指令——pwd

    完整的指令的标准格式:Linux通用的格式 #指令主体(空格) [选项](空格) [操作对象] 一个指令可以包含多个选项,操作对象也可以是多个. 指令pwd: 用法:#pwd(print workin ...

  6. Ajax学习系列——Ajax介绍及优缺点

    一.什么是Ajax Ajax即“Asynchronous JavaScript And XML”(异步JavaScript和XML),是一种创建交互式网页应用的网页开发技术. Ajax = 异步Jav ...

  7. module已经装了但仍提示找不到的解决方法

    今天遇到的问题:(这里只是个例子) 解决方法: npm clean cache --force 删了node_modules 和 package-lock ,然后npm install 如果再不行,看 ...

  8. 常见的Java的软件包

    java.lang: language java的核心包,Object System String Throwable jdk1.2版本后,该包中的类自动被导入. java.awt: 定义的都是用于j ...

  9. Java的Regex --正则表达式

    一.概述 正则表达式通常被用来对字符串提供范围性的校验.替换那些符合某个模式(规则)的文本. 正则表达式所对应的类Pattern,所有的正则表达式都是在这个类下创建的.Pattern类用于创建一个正则 ...

  10. windows driver 枚举串口

    //枚举串口 NTSTATUS status; HANDLE hKey = NULL; OBJECT_ATTRIBUTES oa; UNICODE_STRING strPath = RTL_CONST ...