前言:本文详细介绍了HBase RowFilter过滤器Java&Shell API的使用,并贴出了相关示例代码以供参考。RowFilter 基于行键进行过滤,在工作中涉及到需要通过HBase Rowkey进行数据过滤时可以考虑使用它。比较器细节及原理请参照之前的更文:HBase Filter 过滤器之比较器 Comparator 原理及源码学习

一。Java Api

头部代码

public class RowFilterDemo {

    private static boolean isok = false;
private static String tableName = "test";
private static String[] cfs = new String[]{"f"};
private static String[] data = new String[]{"row-ac:f:c1:v1", "row-ab:f:c2:v2", "row-bc:f:c3:v3", "row-abc:f:c4:v4"}; public static void main(String[] args) throws IOException { MyBase myBase = new MyBase();
Connection connection = myBase.createConnection();
if (isok) {
myBase.deleteTable(connection, tableName);
myBase.createTable(connection, tableName, cfs);
myBase.putRows(connection, tableName, data); // 造数据
}
Table table = connection.getTable(TableName.valueOf(tableName));
Scan scan = new Scan();

中部代码

向右滑动滚动条可查看输出结果。

1. BinaryComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ac]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ac, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc, row-ac]

2. BinaryPrefixComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // []
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac]

3. SubstringComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("ab")); // [row-ab, row-abc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new SubstringComparator("ab")); // [row-ac, row-bc]

4. RegexStringComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new RegexStringComparator("abc")); // [row-ab, row-ac, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("abc")); // [row-abc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("a")); // [row-ab, row-abc, row-ac]

5. NullComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new NullComparator()); // []
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new NullComparator()); // [row-ab, row-abc, row-ac, row-bc]

尾部代码

        scan.setFilter(rowFilter);
ResultScanner scanner = table.getScanner(scan);
Iterator<Result> iterator = scanner.iterator();
LinkedList<String> rowkeys = new LinkedList<>();
while (iterator.hasNext()) {
Result result = iterator.next();
String rowkey = Bytes.toString(result.getRow());
rowkeys.add(rowkey);
}
System.out.println(rowkeys);
scanner.close();
table.close();
connection.close();
}
}

二。Shell Api

1. BinaryComparator 构造过滤器

方式一:

hbase(main):006:0> scan 'test',{FILTER=>"RowFilter(=,'binary:row-ab')"}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
1 row(s) in 0.0140 seconds

支持的比较运算符:= != > >= < <=,不再一一举例。

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):016:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), BinaryComparator.new(Bytes.toBytes('row-ab')))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
1 row(s) in 0.0310 seconds

支持的比较运算符:LESS、LESS_OR_EQUAL、EQUAL、NOT_EQUAL、GREATER、GREATER_OR_EQUAL,不再一一举例。

推荐使用方式一,更简洁方便。

2. BinaryPrefixComparator 构造过滤器

方式一:

hbase(main):023:0> scan 'test',{FILTER=>"RowFilter(=,'binaryprefix:row-ab')"}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0360 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryPrefixComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):027:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), BinaryPrefixComparator.new(Bytes.toBytes('row-ab')))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0110 seconds

其它同上。

3. SubstringComparator 构造过滤器

方式一:

hbase(main):001:0> scan 'test',{FILTER=>"RowFilter(=,'substring:row-ab')"}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.3200 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):007:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('row-ab'))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0230 seconds

区别于上的是这里直接传入字符串进行比较,且只支持EQUAL和NOT_EQUAL两种比较符。

4. RegexStringComparator 构造过滤器

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):007:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), RegexStringComparator.new('row-ab'))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0230 seconds

该比较器直接传入字符串进行比较,且只支持EQUAL和NOT_EQUAL两种比较符。若想使用第一种方式可以传入regexstring试一下,我的版本有点低暂时不支持,不再演示了。

注意这里的正则匹配指包含关系,对应底层find()方法。

此外,RowFilter 不支持使用LongComparator比较器,且BitComparator、NullComparator 比较器用之甚少,也不再介绍。

查看文章全部源代码请访以下GitHub地址:

https://github.com/zhoupengbo/demos-bigdata/blob/master/hbase/hbase-filters-demos/src/main/java/com/zpb/demos/RowFilterDemo.java

转载请注明出处!欢迎关注本人微信公众号【HBase工作笔记】

HBase Filter 过滤器之RowFilter详解的更多相关文章

  1. HBase Filter 过滤器之FamilyFilter详解

    前言:本文详细介绍了 HBase FamilyFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.FamilyFilter 基于列族进行过滤,在工作中涉及 ...

  2. HBase Filter 过滤器之QualifierFilter详解

    前言:本文详细介绍了 HBase QualifierFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.QualifierFilter 基于列名进行过滤, ...

  3. HBase Filter 过滤器之 ValueFilter 详解

    前言:本文详细介绍了 HBase ValueFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.ValueFilter 基于列值进行过滤,在工作中涉及到需 ...

  4. HBase Filter 过滤器之 Comparator 原理及源码学习

    前言:上篇文章HBase Filter 过滤器概述对HBase过滤器的组成及其家谱进行简单介绍,本篇文章主要对HBase过滤器之比较器作一个补充介绍,也算是HBase Filter学习的必备低阶魂技吧 ...

  5. Java 容器之Hashset 详解

    Java 容器之Hashset 详解.http://blog.csdn.net/nvd11/article/details/27716511

  6. Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(上)

    前言 Android中绘图离不开的就是Canvas了,Canvas是一个庞大的知识体系,有Java层的,也有jni层深入到Framework.Canvas有许多的知识内容,构建了一个武器库一般,所谓十 ...

  7. Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(下)

    LinearGradient 线性渐变渲染器 LinearGradient中文翻译过来就是线性渐变的意思.线性渐变通俗来讲就是给起点设置一个颜色值如#faf84d,终点设置一个颜色值如#CC423C, ...

  8. hbase实践之数据读取详解

    hbase基本存储组织结构与数据读取组织结构对比 Segment是Hbase2.0的概念,MemStore由一个可写的Segment,以及一个或多个不可写的Segments构成.故hbase 1.*版 ...

  9. 网页元素定位神器之Xpath详解

    摘要: 经常在工作中会使用到XPath的相关知识,但每次总会在一些关键的地方不记得或不太清楚,所以免不了每次总要查一些零碎的知识,感觉即很烦又浪费时间,所以对XPath归纳及总结一下. ...     ...

随机推荐

  1. html字体大小与颜色设置

    代码架构:<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> //浏览器识 ...

  2. 28.6 Integer 自动装箱和拆箱

    public class IntegerDemo2 { public static void main(String[] args) { //自动装箱 // Integer i = new Integ ...

  3. git中常用命令的总结

    一.git stash  1.git  stash 保存当前工作进度,会把暂存区和工作区的改动保存起来.执行完这个命令后,在运行git status命令,就会发现当前是一个干净的工作区,没有任何改动. ...

  4. File类心得

    File类心得 在程序中设置路径时会有系统依赖的问题,java.io.File类提供一个抽象的.与系统独立的路径表示.给它一个路径字符串,它会将其转换为与系统无关的抽象路径表示,这个路径可以指向一个文 ...

  5. 文档根元素 "beans" 必须匹配 DOCTYPE 根 "null"

    文档根元素 "beans" 必须匹配 DOCTYPE 根 "null" (2011-11-20 21:26:41) 转载▼ 标签: 杂谈 分类: spring- ...

  6. input相关

    input相关 在ios中输入英文首字母默认大写取消方法 <input autocapitalize="off" autocorrect="off" /& ...

  7. For循环详解

    for语句 学过c语言都对循环结构不陌生,尤其是for循环,他是C语言中最有特色的循环语句,使用最为灵活. 形式 结构:for(表达式1:表达式2:表达式3){循环体结构} 每部分的作用 表达式1:一 ...

  8. 009-数组-C语言笔记

    009-数组-C语言笔记 学习目标 1.[掌握]数组的声明 2.[掌握]数组元素的赋值和调用 3.[掌握]数组的初始化 4.[掌握]数组的遍历 5.[掌握]数组在内存中的存储 6.[掌握]数组长度计算 ...

  9. nmon 的下一代工具 njmon

    njmon njmon = nmon + JSON format + real-time push to a stats database + instant graphing of "al ...

  10. threejs创建地球

    上个月底,在朋友圈看到一个号称“这可能是地球上最美的h5”的分享,点进入后发现这个h5还很别致,思考了一会,决定要不高仿一个? 到今天为止,高仿基本完成, 线上地址 github地址 除了手机端的me ...