前言:本文详细介绍了HBase RowFilter过滤器Java&Shell API的使用,并贴出了相关示例代码以供参考。RowFilter 基于行键进行过滤,在工作中涉及到需要通过HBase Rowkey进行数据过滤时可以考虑使用它。比较器细节及原理请参照之前的更文:HBase Filter 过滤器之比较器 Comparator 原理及源码学习

一。Java Api

头部代码

public class RowFilterDemo {

    private static boolean isok = false;
private static String tableName = "test";
private static String[] cfs = new String[]{"f"};
private static String[] data = new String[]{"row-ac:f:c1:v1", "row-ab:f:c2:v2", "row-bc:f:c3:v3", "row-abc:f:c4:v4"}; public static void main(String[] args) throws IOException { MyBase myBase = new MyBase();
Connection connection = myBase.createConnection();
if (isok) {
myBase.deleteTable(connection, tableName);
myBase.createTable(connection, tableName, cfs);
myBase.putRows(connection, tableName, data); // 造数据
}
Table table = connection.getTable(TableName.valueOf(tableName));
Scan scan = new Scan();

中部代码

向右滑动滚动条可查看输出结果。

1. BinaryComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ac]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ac, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc, row-ac]

2. BinaryPrefixComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // []
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac]

3. SubstringComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("ab")); // [row-ab, row-abc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new SubstringComparator("ab")); // [row-ac, row-bc]

4. RegexStringComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new RegexStringComparator("abc")); // [row-ab, row-ac, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("abc")); // [row-abc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("a")); // [row-ab, row-abc, row-ac]

5. NullComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new NullComparator()); // []
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new NullComparator()); // [row-ab, row-abc, row-ac, row-bc]

尾部代码

        scan.setFilter(rowFilter);
ResultScanner scanner = table.getScanner(scan);
Iterator<Result> iterator = scanner.iterator();
LinkedList<String> rowkeys = new LinkedList<>();
while (iterator.hasNext()) {
Result result = iterator.next();
String rowkey = Bytes.toString(result.getRow());
rowkeys.add(rowkey);
}
System.out.println(rowkeys);
scanner.close();
table.close();
connection.close();
}
}

二。Shell Api

1. BinaryComparator 构造过滤器

方式一:

hbase(main):006:0> scan 'test',{FILTER=>"RowFilter(=,'binary:row-ab')"}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
1 row(s) in 0.0140 seconds

支持的比较运算符:= != > >= < <=,不再一一举例。

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):016:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), BinaryComparator.new(Bytes.toBytes('row-ab')))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
1 row(s) in 0.0310 seconds

支持的比较运算符:LESS、LESS_OR_EQUAL、EQUAL、NOT_EQUAL、GREATER、GREATER_OR_EQUAL,不再一一举例。

推荐使用方式一,更简洁方便。

2. BinaryPrefixComparator 构造过滤器

方式一:

hbase(main):023:0> scan 'test',{FILTER=>"RowFilter(=,'binaryprefix:row-ab')"}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0360 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryPrefixComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):027:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), BinaryPrefixComparator.new(Bytes.toBytes('row-ab')))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0110 seconds

其它同上。

3. SubstringComparator 构造过滤器

方式一:

hbase(main):001:0> scan 'test',{FILTER=>"RowFilter(=,'substring:row-ab')"}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.3200 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):007:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('row-ab'))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0230 seconds

区别于上的是这里直接传入字符串进行比较,且只支持EQUAL和NOT_EQUAL两种比较符。

4. RegexStringComparator 构造过滤器

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):007:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), RegexStringComparator.new('row-ab'))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0230 seconds

该比较器直接传入字符串进行比较,且只支持EQUAL和NOT_EQUAL两种比较符。若想使用第一种方式可以传入regexstring试一下,我的版本有点低暂时不支持,不再演示了。

注意这里的正则匹配指包含关系,对应底层find()方法。

此外,RowFilter 不支持使用LongComparator比较器,且BitComparator、NullComparator 比较器用之甚少,也不再介绍。

查看文章全部源代码请访以下GitHub地址:

https://github.com/zhoupengbo/demos-bigdata/blob/master/hbase/hbase-filters-demos/src/main/java/com/zpb/demos/RowFilterDemo.java

转载请注明出处!欢迎关注本人微信公众号【HBase工作笔记】

HBase Filter 过滤器之RowFilter详解的更多相关文章

  1. HBase Filter 过滤器之FamilyFilter详解

    前言:本文详细介绍了 HBase FamilyFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.FamilyFilter 基于列族进行过滤,在工作中涉及 ...

  2. HBase Filter 过滤器之QualifierFilter详解

    前言:本文详细介绍了 HBase QualifierFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.QualifierFilter 基于列名进行过滤, ...

  3. HBase Filter 过滤器之 ValueFilter 详解

    前言:本文详细介绍了 HBase ValueFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.ValueFilter 基于列值进行过滤,在工作中涉及到需 ...

  4. HBase Filter 过滤器之 Comparator 原理及源码学习

    前言:上篇文章HBase Filter 过滤器概述对HBase过滤器的组成及其家谱进行简单介绍,本篇文章主要对HBase过滤器之比较器作一个补充介绍,也算是HBase Filter学习的必备低阶魂技吧 ...

  5. Java 容器之Hashset 详解

    Java 容器之Hashset 详解.http://blog.csdn.net/nvd11/article/details/27716511

  6. Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(上)

    前言 Android中绘图离不开的就是Canvas了,Canvas是一个庞大的知识体系,有Java层的,也有jni层深入到Framework.Canvas有许多的知识内容,构建了一个武器库一般,所谓十 ...

  7. Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(下)

    LinearGradient 线性渐变渲染器 LinearGradient中文翻译过来就是线性渐变的意思.线性渐变通俗来讲就是给起点设置一个颜色值如#faf84d,终点设置一个颜色值如#CC423C, ...

  8. hbase实践之数据读取详解

    hbase基本存储组织结构与数据读取组织结构对比 Segment是Hbase2.0的概念,MemStore由一个可写的Segment,以及一个或多个不可写的Segments构成.故hbase 1.*版 ...

  9. 网页元素定位神器之Xpath详解

    摘要: 经常在工作中会使用到XPath的相关知识,但每次总会在一些关键的地方不记得或不太清楚,所以免不了每次总要查一些零碎的知识,感觉即很烦又浪费时间,所以对XPath归纳及总结一下. ...     ...

随机推荐

  1. pycharm 永久激活方法

    打开终端,执行: cd /etc/ sudo vim hosts 在最后一行加上: 0.0.0.0 account.jetbrains.com 打开pycharm,选择Activation Code ...

  2. 手动搭建I/O网络通信框架4:AIO编程模型,聊天室终极改造

    第一章:手动搭建I/O网络通信框架1:Socket和ServerSocket入门实战,实现单聊 第二章:手动搭建I/O网络通信框架2:BIO编程模型实现群聊 第三章:手动搭建I/O网络通信框架3:NI ...

  3. php-fpm 进程数的设定

    近日,服务器出现异常,网站不能正常访问.经排查是php的问题. 在重启php-fpm时,恢复正常.1分钟之后又出现故障.查看php日志文件 /usr/local/php/var/log 后提示 WAR ...

  4. python 字节码死磕

    前言:  如果你跟我一样,对python的字节码感兴趣,想了解python的代码在内存中到底是怎么去运行的,那么你可以继续往下看,如果你是python新手,我建议你移步它处,本文适合有点基础的pyth ...

  5. Java编程最差实践常见问题详细说明(2)转

    Java编程最差实践常见问题详细说明(2)转 2012-12-13 13:57:20|  分类: JAVA |  标签:java  |举报|字号 订阅     反射使用不当  错误的写法: Java代 ...

  6. 发布公开的pod

    发布公开的pod 方便项目 通过cocoapods 使用,便于版本版本管理,下面是简单步奏: 0.首次操作先要注册Trunk: pod trunk register zhujin001xb@163.c ...

  7. AJ学IOS(14)UI之UITableView扩充_表格的修改_(增删移动)

    AJ分享,必须精品 先看效果图 代码 // // Created by apple on 14-8-19. // Copyright (c) 2014年 itcast. All rights rese ...

  8. 21-Java-Hibernate框架(一)

    一.Hibernate了解 Hibernate框架是Java持久层的框架,是Gavin King发明的,2001年发布的,JBoss公司的产品,2003年进入市场. Hibernate是基于对象来操作 ...

  9. 编码理解的漫漫长路(Unicode、GBK、ISO)

    Ø 那么现在开始康康都有哪些编码方式  1.  ASCII

  10. 关于DNS解析:侧面剖析

    作为一个合格的重度windows使用用户,我清楚的知道一个文件——hosts文件:C:\Windows\System32\drivers\etc\hosts文件 该文件需要一定的管理员权限. 这个文件 ...