前言:本文详细介绍了HBase RowFilter过滤器Java&Shell API的使用,并贴出了相关示例代码以供参考。RowFilter 基于行键进行过滤,在工作中涉及到需要通过HBase Rowkey进行数据过滤时可以考虑使用它。比较器细节及原理请参照之前的更文:HBase Filter 过滤器之比较器 Comparator 原理及源码学习

一。Java Api

头部代码

public class RowFilterDemo {

    private static boolean isok = false;
private static String tableName = "test";
private static String[] cfs = new String[]{"f"};
private static String[] data = new String[]{"row-ac:f:c1:v1", "row-ab:f:c2:v2", "row-bc:f:c3:v3", "row-abc:f:c4:v4"}; public static void main(String[] args) throws IOException { MyBase myBase = new MyBase();
Connection connection = myBase.createConnection();
if (isok) {
myBase.deleteTable(connection, tableName);
myBase.createTable(connection, tableName, cfs);
myBase.putRows(connection, tableName, data); // 造数据
}
Table table = connection.getTable(TableName.valueOf(tableName));
Scan scan = new Scan();

中部代码

向右滑动滚动条可查看输出结果。

1. BinaryComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ac]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ac, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryComparator(Bytes.toBytes("row-ac"))); // [row-ab, row-abc, row-ac]

2. BinaryPrefixComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.GREATER_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // []
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.LESS_OR_EQUAL, new BinaryPrefixComparator(Bytes.toBytes("row-a"))); // [row-ab, row-abc, row-ac]

3. SubstringComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new SubstringComparator("ab")); // [row-ab, row-abc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new SubstringComparator("ab")); // [row-ac, row-bc]

4. RegexStringComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new RegexStringComparator("abc")); // [row-ab, row-ac, row-bc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("abc")); // [row-abc]
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new RegexStringComparator("a")); // [row-ab, row-abc, row-ac]

5. NullComparator 构造过滤器

        RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.EQUAL, new NullComparator()); // []
RowFilter rowFilter = new RowFilter(CompareFilter.CompareOp.NOT_EQUAL, new NullComparator()); // [row-ab, row-abc, row-ac, row-bc]

尾部代码

        scan.setFilter(rowFilter);
ResultScanner scanner = table.getScanner(scan);
Iterator<Result> iterator = scanner.iterator();
LinkedList<String> rowkeys = new LinkedList<>();
while (iterator.hasNext()) {
Result result = iterator.next();
String rowkey = Bytes.toString(result.getRow());
rowkeys.add(rowkey);
}
System.out.println(rowkeys);
scanner.close();
table.close();
connection.close();
}
}

二。Shell Api

1. BinaryComparator 构造过滤器

方式一:

hbase(main):006:0> scan 'test',{FILTER=>"RowFilter(=,'binary:row-ab')"}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
1 row(s) in 0.0140 seconds

支持的比较运算符:= != > >= < <=,不再一一举例。

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):016:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), BinaryComparator.new(Bytes.toBytes('row-ab')))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
1 row(s) in 0.0310 seconds

支持的比较运算符:LESS、LESS_OR_EQUAL、EQUAL、NOT_EQUAL、GREATER、GREATER_OR_EQUAL,不再一一举例。

推荐使用方式一,更简洁方便。

2. BinaryPrefixComparator 构造过滤器

方式一:

hbase(main):023:0> scan 'test',{FILTER=>"RowFilter(=,'binaryprefix:row-ab')"}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0360 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.BinaryPrefixComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):027:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), BinaryPrefixComparator.new(Bytes.toBytes('row-ab')))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0110 seconds

其它同上。

3. SubstringComparator 构造过滤器

方式一:

hbase(main):001:0> scan 'test',{FILTER=>"RowFilter(=,'substring:row-ab')"}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.3200 seconds

方式二:

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):007:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('row-ab'))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0230 seconds

区别于上的是这里直接传入字符串进行比较,且只支持EQUAL和NOT_EQUAL两种比较符。

4. RegexStringComparator 构造过滤器

import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.RowFilter hbase(main):007:0> scan 'test',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), RegexStringComparator.new('row-ab'))}
ROW COLUMN+CELL
row-ab column=f:c2, timestamp=1588156704669, value=v2
row-abc column=f:c4, timestamp=1588156704669, value=v4
2 row(s) in 0.0230 seconds

该比较器直接传入字符串进行比较,且只支持EQUAL和NOT_EQUAL两种比较符。若想使用第一种方式可以传入regexstring试一下,我的版本有点低暂时不支持,不再演示了。

注意这里的正则匹配指包含关系,对应底层find()方法。

此外,RowFilter 不支持使用LongComparator比较器,且BitComparator、NullComparator 比较器用之甚少,也不再介绍。

查看文章全部源代码请访以下GitHub地址:

https://github.com/zhoupengbo/demos-bigdata/blob/master/hbase/hbase-filters-demos/src/main/java/com/zpb/demos/RowFilterDemo.java

转载请注明出处!欢迎关注本人微信公众号【HBase工作笔记】

HBase Filter 过滤器之RowFilter详解的更多相关文章

  1. HBase Filter 过滤器之FamilyFilter详解

    前言:本文详细介绍了 HBase FamilyFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.FamilyFilter 基于列族进行过滤,在工作中涉及 ...

  2. HBase Filter 过滤器之QualifierFilter详解

    前言:本文详细介绍了 HBase QualifierFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.QualifierFilter 基于列名进行过滤, ...

  3. HBase Filter 过滤器之 ValueFilter 详解

    前言:本文详细介绍了 HBase ValueFilter 过滤器 Java&Shell API 的使用,并贴出了相关示例代码以供参考.ValueFilter 基于列值进行过滤,在工作中涉及到需 ...

  4. HBase Filter 过滤器之 Comparator 原理及源码学习

    前言:上篇文章HBase Filter 过滤器概述对HBase过滤器的组成及其家谱进行简单介绍,本篇文章主要对HBase过滤器之比较器作一个补充介绍,也算是HBase Filter学习的必备低阶魂技吧 ...

  5. Java 容器之Hashset 详解

    Java 容器之Hashset 详解.http://blog.csdn.net/nvd11/article/details/27716511

  6. Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(上)

    前言 Android中绘图离不开的就是Canvas了,Canvas是一个庞大的知识体系,有Java层的,也有jni层深入到Framework.Canvas有许多的知识内容,构建了一个武器库一般,所谓十 ...

  7. Android为TV端助力 转载:Android绘图Canvas十八般武器之Shader详解及实战篇(下)

    LinearGradient 线性渐变渲染器 LinearGradient中文翻译过来就是线性渐变的意思.线性渐变通俗来讲就是给起点设置一个颜色值如#faf84d,终点设置一个颜色值如#CC423C, ...

  8. hbase实践之数据读取详解

    hbase基本存储组织结构与数据读取组织结构对比 Segment是Hbase2.0的概念,MemStore由一个可写的Segment,以及一个或多个不可写的Segments构成.故hbase 1.*版 ...

  9. 网页元素定位神器之Xpath详解

    摘要: 经常在工作中会使用到XPath的相关知识,但每次总会在一些关键的地方不记得或不太清楚,所以免不了每次总要查一些零碎的知识,感觉即很烦又浪费时间,所以对XPath归纳及总结一下. ...     ...

随机推荐

  1. css--->圆角设置

    1.为元素添加四个相同的圆角: 语法结构:border-radius:r: r为圆角的半径大小 eg:如下样式,给元素添加四个圆角为10px   代码如下: <!DOCTYPE html> ...

  2. Python操作rabbitmq系列(四):根据类型订阅消息

    在上一章中,所有的接收端获取的所有的消息.这一章,我们将讨论,一些消息,仍然发送给所有接收端.其中,某个接收端,只对其中某些消息感兴趣,它只想接收这一部分消息.如下图:C1,只对error感兴趣,C2 ...

  3. Python设计模式(1)-简单工厂模式

    为操作数据库设计增删改查操作 # coding=utf-8class DbManager: def __init__(self): pass def operate_db(self): pass cl ...

  4. windows上jmeter目录结构功能

    1.bin :存储了jmeter的可执行程序,如启动 2.lib:存储了jmeter的整合的功能(如.jar文件程序) 3.启动jmeter:双击bin\apachejmeter.jar jmeter ...

  5. SpringMVC框架详细教程(四)_使用maven导入各个版本的Spring依赖包

    使用maven导入Spring依赖包 上一节讲了如何向动态Web项目添加下载的Spring依赖包,作为补充下面列出了如何使用 maven 导入Spring的依赖包,可以选择需要的导入(推荐)或者全部导 ...

  6. Java成长第三集--基础重点详细说明

    接上篇文章,继续阐述相关的重点基础知识,话不多说! 一.Java中equals()和“==”区别 1.对于8种基础数据类型,使用“=="比较值是否相等: 2.对于复合数据类型(类),使用eq ...

  7. Redis学习二:Redis高并发之主从模式

    申明 本文章首发自本人公众号:壹枝花算不算浪漫,如若转载请标明来源! 感兴趣的小伙伴可关注个人公众号:壹枝花算不算浪漫 22.jpg 前言 前面已经学习了Redis的持久化方式,接下来开始学习Redi ...

  8. docker 概览 (1)

    Docker Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows 机器上,也可以实现虚拟化.容器是完全使 ...

  9. 爬虫实战2_有道翻译sign破解

    目标url 有道翻译 打开网站输入要翻译的内容,一一查找network发现数据返回json格式,红框就是我们的翻译结果 查看headers,发现返回结果的请求是post请求,且携带一大堆form_da ...

  10. vue element多文件多格式上传文件,后台springmvc完整代码

       template:        <el-upload               class="upload-demo"               ref=&quo ...