数学--数论--整除分块(巨TM详细,学不会,你来打我)
1.概念
从一道例题说起
在介绍整除分块之前,我们先来看一道算数题:已知正整数n,求∑i=1n⌊ni⌋已知正整数n,求∑i=1n⌊ni⌋在介绍整除分块之前,我们先来看一道算数题:
已知正整数n,求∑i=1n⌊ni⌋\begin{aligned}已知正整数n,求\sum_{i=1}^n \left⌊\dfrac{n}{i}\right⌋\end{aligned}在介绍整除分块之前,我们先来看一道算数题:已知正整数n,求∑i=1n⌊ni⌋已知正整数n,求i=1∑n⌊in⌋
我们写一个表格看一看1-20的整除是什么样子的
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
⌊20i⌋\left⌊\dfrac{20}{i} \right⌋⌊i20⌋ | 20 | 10 | 6 | 5 | 4 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
表中同样的值会连续出现,而相同的值所划分的区间积是整出分块。整除的性质使得从1到n的数组表可根据数值划分为不同的分块,且分块数远远小于n。利用这种性质,我们如果能推导出每个分块具体的左右端点位置在哪,这个问题就可以快速求解出来了。
2.整除分块公式推导
向下取整的情形
还是说我们的例题
已知正整数n,求∑i=1n⌊ni⌋已知正整数n,求\sum_{i=1}^n \left⌊\dfrac{n}{i}\right⌋已知正整数n,求∑i=1n⌊in⌋
假设我们已知某一个分块的左端点lll,要求解出该分块的右端点rrr。设该分块的数值为kkk,对于该分块中的每个数iii,有k=⌊ni⌋=⌊nl⌋k=\left⌊\dfrac{n}{i}\right⌋=\left⌊\dfrac{n}{l}\right⌋k=⌊in⌋=⌊ln⌋,即ik≤nik\le nik≤n,也就是说我们找到可得使ik≤nik\le nik≤n成立的最大的i的值即是我们所求的右端点r,因此我们可以得到下列式子:
{k=⌊nl⌋ r=max(i),ik≤n\begin{cases}k = \left⌊\dfrac{n}{l}\right⌋ \\\space \\r = \max (i), ik \le n\end{cases}⎩⎪⎪⎨⎪⎪⎧k=⌊ln⌋ r=max(i),ik≤n
推导可得:
r=⌊nk⌋=⌊n⌊nl⌋⌋r= \left⌊\dfrac{n}{k}\right⌋=\left⌊\dfrac{n}{\left⌊\dfrac{n}{l}\right⌋ }\right⌋r=⌊kn⌋=⎣⎢⎢⎢⌊ln⌋n⎦⎥⎥⎥
容易得到代码:
ans = 0;
for(int l = 1, r; l <= n; l = r + 1)
{
r = n / (n / l);
ans += n / l * (r - l + 1);
}
But 还没有结束
我们再看这一道题:
已知正整数n,a,b,求∑i=1n⌊nai+b⌋\begin{aligned}已知正整数n, a, b, 求\sum_{i=1}^n \left⌊\dfrac{n}{ai + b} \right⌋\end{aligned}已知正整数n,a,b,求i=1∑n⌊ai+bn⌋
抓瞎了,但是变变形应该可以做。
我们记得
{k=⌊nl⌋ r=max(i),ik≤n\begin{cases}k = \left⌊\dfrac{n}{l}\right⌋ \\\space \\r = \max (i), ik \le n\end{cases}⎩⎪⎪⎨⎪⎪⎧k=⌊ln⌋ r=max(i),ik≤n
r=⌊nk⌋=⌊n⌊nl⌋⌋r= \left⌊\dfrac{n}{k}\right⌋=\left⌊\dfrac{n}{\left⌊\dfrac{n}{l}\right⌋ }\right⌋r=⌊kn⌋=⎣⎢⎢⎢⌊ln⌋n⎦⎥⎥⎥
以上两个公式,我们有如下
{k=⌊nal+b⌋ r=max(i),(ai+b)k≤n\begin{cases}k = \left⌊\dfrac{n}{al+b}\right⌋ \\\space \\r = \max (i), (ai+b)k \le n\end{cases}⎩⎪⎪⎨⎪⎪⎧k=⌊al+bn⌋ r=max(i),(ai+b)k≤n
上式子可推导为
但是对于这个题目,我们给出第二种推导方式,使得一种推导方式解决多种题目。
这我们再做
已知正整数n,求∑i=1n⌊ni2⌋\begin{aligned}已知正整数n, 求\sum_{i=1}^n \left⌊\dfrac{n}{i^2} \right⌋\end{aligned}已知正整数n,求i=1∑n⌊i2n⌋
我们按照上面的方式推导
不知道这时候有多少人偷笑,说自己把整除分块学会了,曾经以为自己是个王者,结果他爸来。
这个题你懵了吗,对于一对 L和R,中间的值是等差数列,相差1,归根结底还是整除分块,还是找到l和r,通过等差数列计算即可。
代码如下:
#include<bits/stdc++.h>
using namespace std;
int main()
{
long long n, k, ans = 0;
long long left = 1, right, rest;
scanf("%lld%lld", &n, &k);
while (left <= n && left <= k) //求从1到min(n, k)内的总和
{
right = min(k / (k / left), n);
rest = k % left;
ans += (rest + rest - (right - left) * (k / left)) * (right - left + 1) / 2;
left = right + 1;
}
if (n > k)
{
ans += k * (n - k);
}
cout << ans;
}
王者你会了吗?
王者自信满满的说自己会了!
王者再看看这个题
已知正整数n,求∑i=1n⌈ni⌉已知正整数n,求\sum_{i=1}^n \left⌈\dfrac{n}{i}\right⌉已知正整数n,求∑i=1n⌈in⌉
没4没4,我们就不推导向上取整了,这里只需要一个小转化,将向上取整转化为向下取整。
我们考虑没有整除的时候是不是就有
⌈ni⌉=⌊ni⌋+1\left⌈\dfrac{n}{i}\right⌉ =\left⌊\dfrac{n}{i}\right⌋+1⌈in⌉=⌊in⌋+1 如果整除的时候就相等了,那么我们只要不加1,我们加上i−1i\dfrac{i-1}{i}ii−1就可以避免这种情况,那么就可以转化为
通过上面向下取整的推到即可得到
到这里王者就可以独当一面了。
数学--数论--整除分块(巨TM详细,学不会,你来打我)的更多相关文章
- CodeForces 1202F(数论,整除分块)
题目 CodeForces 1213G 做法 假设有\(P\)个完整的循环块,假设此时答案为\(K\)(实际答案可能有多种),即每块完整块长度为\(K\),则\(P=\left \lfloor \fr ...
- [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)
[POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...
- [笔记] 整除分块 & 异或性质
整除分块 参考资料:整除分块_peng-ym OI生涯中的各种数论算法的证明 公式 求:\(\sum_{i=1}^{n}\lfloor\frac{n}{i}\rfloor\) 对于每个\(\lfloo ...
- P2261 [CQOI2007]余数求和[整除分块]
题目大意 给出正整数 n 和 k 计算 \(G(n, k)=k\ \bmod\ 1 + k\ \bmod\ 2 + k\ \bmod\ 3 + \cdots + k\ \bmod\ n\) 的值 其中 ...
- luogu2261余数求和题解--整除分块
题目链接 https://www.luogu.org/problemnew/show/P2261 分析 显然\(k\) \(mod\) \(i=k-\lfloor {k/i}\rfloor\) \(\ ...
- 51Nod 1225 余数之和 [整除分块]
1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...
- [Bzoj 2956] 模积和 (整除分块)
整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数 ...
- P2568 莫比乌斯反演+整除分块
#include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...
- LOJ #2802. 「CCC 2018」平衡树(整除分块 + dp)
题面 LOJ #2802. 「CCC 2018」平衡树 题面有点难看...请认真阅读理解题意. 转化后就是,给你一个数 \(N\) ,每次选择一个 \(k \in [2, N]\) 将 \(N\) 变 ...
随机推荐
- 一天学一个Linux命令:第二天 cd pwd
文章更新于:2020-03-08 注:本文参照 man pwd 手册,并给出使用样例. 文章目录 一.命令之 `cd` 和 `pwd` 1.命令介绍 2.语法格式 3.使用样例 4.pwd 参数 5. ...
- 家庭记账本app进度之关于tap的相关操作1
今天还主要学习关于怎样制作微信的先关的tap. 今天的主要成果是已经了解了相关的技术,以及相关的思路.代码经过一个下午的编写,基本接近尾声. 更详细的实验代码,以及相关的知识点将在明天完善后进行发表. ...
- git rebase解决合并冲突
git rebase解决合并冲突 记录合并冲突解决方法,使用的git rebase,感觉很好用 1.git rebase 文档 https://git-scm.com/docs/git-rebas ...
- python3(三十) Enum
""" """ __author__ = 'shaozhiqi' # 当我们需要定义常量时,一个办法是用大写变量通过整数来定义,例如月份: ...
- zookeeper的下载安装和选举机制(zookeeper一)
1. 简要概述 Zookeeper是一个开源的分布式的,为分布式应用提供协调服务的框架.Zookeeper从设计模式角度来理解:是一个基于观察者模式设计的分布式服务管理框架它负责存储和管理大家都关心的 ...
- windows上jmeter目录结构功能
1.bin :存储了jmeter的可执行程序,如启动 2.lib:存储了jmeter的整合的功能(如.jar文件程序) 3.启动jmeter:双击bin\apachejmeter.jar jmeter ...
- python画图——雪花(科赫曲线)
科赫曲线是一种分形,其形态非常像雪花,因此又被称作科赫雪花.雪花曲线. 下面是用python的turtle包让我们来实时画一个 import turtledef koch(t,n): #定义一个函数 ...
- 格式化启动盘win10
我这个(U盘)磁盘被分成了两个区,不能直接格式化 第一步: 第二步: 删除完了之后,选择格式化,ok. 说明:格式化时要选择系统. 常规NTFS 缺点:老设备,比如打印机,监控机识别不了. FAT系 ...
- [Abp vNext 入坑分享] - 1.创建初始的项目
一.简要说明 本篇文章主要是跟着官方的文档把项目安装好先,同时了解一下大概的项目结构. 二.具体步骤 2.1全局安装ABP CLI,直接在cmd中安装即可.如果你之前安装过,这里可以略过: dotne ...
- 3. string
let str = "my string"; 1. str.startsWith('my'); //true2.str.endsWith('my'); //false3.str.i ...