"TensorFlow is an Open Source Software Library for Machine INtenlligence"

本笔记参考tensorflow.org的教程,翻译并记录作者的学习过程,仅供参考,如有不当之处,请及时指出并多多包涵。

TensorFlow是一款开源的数学计算软件,使用data flow graphs的形式进行计算。这种灵活的架构允许我们使用相同的API在单或多CPUs或GPU,servers设置移动设备上进行计算。

Data Flow Graph: 使用有向图的节点和边共同描述数学计算。graph中的nodes代表数学操作,也可以表示数据输入输出的端点。边表示节点之间的关系,传递操作之间互相使用的多位数组(tensors,张量),tensor在graph中流动——这也就是TensorFlow名字的由来。一旦节点相连的边传来了数据流,节点就被分配到计算设备上异步的(节点间)、并行的(节点内)执行。参见上图。

TensorFlow的特点:

  1. Deep Flexibility: TensorFlow并不只是一个规则的neural network库,事实上如果你可以将你的计算表示成data flow graph的形式,就可以使用TensorFlow。用户构建graph,写内层循环代码驱动计算,TensorFlow可以帮助装配子图。定义新的操作只需要写一个Python函数,如果缺少底层的数据操作,需要写一些C++代码定义操作。
  2. True Portability: 可以应用在不同设备上,cpus,gpu,移动设备,云平台等
  3. Connect Research and Production
  4. Auto-Differentiation:TensorFlow的自动差分能力对很多基于Graph的机器学习算法有益??
  5. Language Options: TensorFlow很容易使用,有python接口和C++接口。其他语言可以使用SWIG工具使用接口。(SWIG,Simplified Wrapper and Interface Generator, 是一个非常优秀的开源工具,支持您将 C/C++ 代码与任何主流脚本语言相集成。)
  6. Maximize Performance: 充分利用硬件资源。TensorFlow可以将graph的不同计算单元分配到不同设备执行,使用TensorFlow处理副本。

Google TensorFlow 学习笔记一 —— TensorFlow简介的更多相关文章

  1. tensorflow学习笔记——使用TensorFlow操作MNIST数据(2)

    tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例 ...

  2. tensorflow学习笔记——使用TensorFlow操作MNIST数据(1)

    续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有He ...

  3. tensorflow学习笔记一----------tensorflow安装

    2016年11月30日,tensorflow(https://www.tensorflow.org/)更新了0.12版本,这标志着我们终于可以在windows下使用tensorflow了(但是还是推荐 ...

  4. Google Analytics 学习笔记一 —— GA简介

    GA的原理 网页页面添加GA跟踪代码,以"一像素"传递信息给服务器 hit(交互) --> sessions(会话) --> user(用户) 竞品对比 Firebas ...

  5. tensorflow学习笔记——自编码器及多层感知器

    1,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取.特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这 ...

  6. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  7. tensorflow学习笔记——VGGNet

    2014年,牛津大学计算机视觉组(Visual Geometry Group)和 Google DeepMind 公司的研究员一起研发了新的深度卷积神经网络:VGGNet ,并取得了ILSVRC201 ...

  8. Tensorflow学习笔记No.4.2

    使用CNN卷积神经网络(2) 使用Tensorflow搭建简单的CNN卷积神经网络对fashion_mnist数据集进行分类 不了解是那么是CNN卷积神经网络的小伙伴可以参考上一篇博客(Tensorf ...

  9. Tensorflow学习笔记No.4.1

    使用CNN卷积神经网络(1) 简单介绍CNN卷积神经网络的概念和原理. 已经了解的小伙伴可以跳转到Tensorflow学习笔记No.4.2学习如和用Tensorflow实现简单的卷积神经网络. 1.C ...

随机推荐

  1. springboot项目中引用其他springboot项目jar

    1. 剔除要引入的springboot项目中不需要的文件:如Application和ApplicationTests等 2.打包 不能使用springboot项目自带的打包插件进行打包: 3.打包 4 ...

  2. 详解http之post

    详解http之post 首先,我们先看看jquery中的post方法的使用: $.ajax({ url:'api/bbg/goods/get_goods_list_wechat', data:{ , ...

  3. webservice 介绍

    Web service 即web服务,它是一种跨编程语言和跨操作系统平台的远程调用技术即跨平台远程调用技术. l 采用标准SOAP(Simple Object Access Protocol)  协议 ...

  4. Beam编程系列之Python SDK Quickstart(官网的推荐步骤)

    不多说,直接上干货! https://beam.apache.org/get-started/quickstart-py/ Beam编程系列之Java SDK Quickstart(官网的推荐步骤)

  5. CMD 模块定义规范【转】

    在 Sea.js 中,所有 JavaScript 模块都遵循 CMD(Common Module Definition) 模块定义规范.该规范明确了模块的基本书写格式和基本交互规则. 在 CMD 规范 ...

  6. [转]批处理for命令使用指南

    摘要:本文由浅入深,为大家专门讲解for的用法,希望大家喜欢. 首先应该明确的是,for不是一个简单的命令,它的用法比较复杂,它还可以带四个参数(/L /D /R /F),其中:/L和/F参数是最经常 ...

  7. Coursera 机器学习 第8章(上) Unsupervised Learning 学习笔记

    8 Unsupervised Learning8.1 Clustering8.1.1 Unsupervised Learning: Introduction集群(聚类)的概念.什么是无监督学习:对于无 ...

  8. 【Linux】Linux系统启动过程

    1.Linux系统的启动过程并不是大家想象中的那么复杂,其过程可以分为5个阶段: 内核的引导. 运行 init. 系统初始化. 建立终端 . 用户登录系统. 1.Linux系统的启动过程并不是大家想象 ...

  9. dojo入门

    1.引入dojo.js dojo的发行包里有4个子目录,要引入的文件是名叫"dojo"的子目录里的dojo.js. 假设你是这样的目录结构: project | +--dojo-l ...

  10. 个人MySQL股票数据库的建立日记

    #!/usr/bin/python# -*- coding: UTF-8 -*- import tushare as tsfrom sqlalchemy import create_engine co ...