任意门:http://poj.org/problem?id=1330

Nearest Common Ancestors

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 34942   Accepted: 17695

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

题意概括:

给一棵有N个节点,N-1条边的树 和 一对结点,求这对结点的最近公共祖先。

解题思路:

找根结点用一个标记数组

找公共祖先用简单粗暴的 Tarjan。

AC code:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int MAXN = 1e4+;
struct Edge{int v, next;}edge[MAXN<<];
int head[MAXN], cnt;
int fa[MAXN];
bool in[MAXN];
bool vis[MAXN];
int N, M, S, ans, a, b; inline void init()
{
memset(head, -, sizeof(head));
memset(vis, false, sizeof(vis));
memset(in, false, sizeof(in));
cnt = ;
} inline void AddEdge(int from, int to)
{
edge[cnt].v = to;
edge[cnt].next = head[from];
head[from] = cnt++;
} int findset(int x)
{
int root = x;
while(fa[root] != root) root = fa[root]; int tmp;
while(fa[x] != root){
tmp = fa[x];
fa[x] = root;
x = tmp;
}
return root;
} void Tarjan(int s)
{
fa[s] = s;
for(int i = head[s]; i != -; i = edge[i].next){
int Eiv = edge[i].v;
Tarjan(Eiv);
fa[findset(Eiv)] = s;
}
vis[s] = true;
if(s == a){
if(vis[a] && vis[b]) ans = findset(b);
}
else if(s == b){
if(vis[a] && vis[b]) ans = findset(a);
}
} int main()
{
int T_case, u, v;
scanf("%d", &T_case);
while(T_case--)
{
init();
scanf("%d", &N);
M = N-;
for(int i = ; i <= M; i++){
scanf("%d %d", &u, &v);
AddEdge(u, v);
in[v] = true;
//AddEdge(v, u);
}
scanf("%d %d", &a, &b);
int root = ;
for(int i = ; i <= N; i++){
if(!in[i]){root = i;break;}
}
Tarjan(root);
printf("%d\n", ans);
}
return ;
}

POJ 1330 Nearest Common Ancestors 【LCA模板题】的更多相关文章

  1. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  2. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  3. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  4. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  5. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  6. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  7. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  8. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  9. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  10. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

随机推荐

  1. CentOS(Linux)主机名字前多了 (base),如何取消和添加

    我们知道IDE中有显示或隐藏某个选项/页面的功能,我们想要修改这个参数,一般都会到设置(settings)中去找.那么与之对应的,Linux上这个终端对应的设置也应该找设置文件. Terminal对应 ...

  2. GreenPlum 大数据平台--介绍

    一,GreenPlum 01,介绍: Greenplum是一种基于PostgreSQL的分布式数据库,其采用shared-nothing架构,主机.操作系统.内存.存储都是自我控制的,不存在共享. 官 ...

  3. (转)shell命令:echo命令详解

    shell命令:echo命令详解 原文:https://www.cnblogs.com/xyz0601/archive/2015/04/23/4450736.html 功能说明:显示文字. 语 法:e ...

  4. vue之理解异步更新 --- nextTick

    默认情况下,vue中DOM的更新是异步执行的,理解这一点非常重要. 当侦测到数据变化时,Vue会打开一个队列,然后把在同一个事件循环(event loop)当中观察到的数据变化的watcher推送进入 ...

  5. 阿里云服务器对外开放tomcat端口访问

    今天第一次在阿里云服务器ecs上安装完成tomcat,然后启动tomcat之后.在本地输入ip:端口,发现不能访问. 出现这个的原因可能是你购买的服务器是 专有网络 类型的 如果是专有网络类型的服务器 ...

  6. 018-面向接口编程的BeanFactory模板代码

    1 BeanFactory工具类 package www.test.utils; import org.dom4j.Document; import org.dom4j.Element; import ...

  7. Win10内置应用恢复初始状态

    和Win8/Win8.1相同,Win10也内置了很多默认Windows应用,比如计算器.天气.人脉.Groove音乐.电影和电视.邮件和日历.Edge浏览器等.一般情况下,这些应用不会有太大的问题,但 ...

  8. java连接sql server数据库

    1.新建项目,导入包  sqljdbc4.jar或sqljdbc.jar(jdk1.7版本) 2.新建类文件ConnectionDB.java package hello; import java.s ...

  9. C#+ObjectArx CAD二次开发(2)

    前面开了一个头,这里添加几个功能的实现, //添加图层 private void LoadLayer() { Document acDoc = Application.DocumentManager. ...

  10. C#中.Net的值传递和引用传递

    /// <summary> /// 电脑类 /// </summary> public class Computer { public string Type { get; s ...