任意门:http://poj.org/problem?id=1330

Nearest Common Ancestors

Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 34942   Accepted: 17695

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

题意概括:

给一棵有N个节点,N-1条边的树 和 一对结点,求这对结点的最近公共祖先。

解题思路:

找根结点用一个标记数组

找公共祖先用简单粗暴的 Tarjan。

AC code:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int MAXN = 1e4+;
struct Edge{int v, next;}edge[MAXN<<];
int head[MAXN], cnt;
int fa[MAXN];
bool in[MAXN];
bool vis[MAXN];
int N, M, S, ans, a, b; inline void init()
{
memset(head, -, sizeof(head));
memset(vis, false, sizeof(vis));
memset(in, false, sizeof(in));
cnt = ;
} inline void AddEdge(int from, int to)
{
edge[cnt].v = to;
edge[cnt].next = head[from];
head[from] = cnt++;
} int findset(int x)
{
int root = x;
while(fa[root] != root) root = fa[root]; int tmp;
while(fa[x] != root){
tmp = fa[x];
fa[x] = root;
x = tmp;
}
return root;
} void Tarjan(int s)
{
fa[s] = s;
for(int i = head[s]; i != -; i = edge[i].next){
int Eiv = edge[i].v;
Tarjan(Eiv);
fa[findset(Eiv)] = s;
}
vis[s] = true;
if(s == a){
if(vis[a] && vis[b]) ans = findset(b);
}
else if(s == b){
if(vis[a] && vis[b]) ans = findset(a);
}
} int main()
{
int T_case, u, v;
scanf("%d", &T_case);
while(T_case--)
{
init();
scanf("%d", &N);
M = N-;
for(int i = ; i <= M; i++){
scanf("%d %d", &u, &v);
AddEdge(u, v);
in[v] = true;
//AddEdge(v, u);
}
scanf("%d %d", &a, &b);
int root = ;
for(int i = ; i <= N; i++){
if(!in[i]){root = i;break;}
}
Tarjan(root);
printf("%d\n", ans);
}
return ;
}

POJ 1330 Nearest Common Ancestors 【LCA模板题】的更多相关文章

  1. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  2. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  3. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  4. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  5. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  6. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  7. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  8. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  9. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  10. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

随机推荐

  1. rancher 2.X 搭建小型web集群+mysql主从复制

    一,环境配置    rancher 2.1.6 二,配置harbor私有仓库 见上文 三,配置私有镜像 01,总文件 dockerfile 为主配置文件,html 为站点文件wordpress.,官网 ...

  2. MAYA 卸载工具,完美彻底清除干净maya各种残留注册表和文件

    是不是遇到MAYA/CAD/3DSMAX/INVENTOR安装失败?AUTODESK系列软件着实令人头疼,MAYA/CAD/3DSMAX/INVENTOR安装失败之后不能完全卸载!!!(比如maya, ...

  3. 解决html5中标签出现的不兼容的问题

    HTML5的语义化标签以及属性,可以让开发者非常方便地实现清晰的web页面布局,加上CSS3的效果渲染,快速建立丰富灵活的web页面显得非常简单. HTML5的新标签元素有: <header&g ...

  4. 使用selenium时碰到的某一个坑

    如图:

  5. Js常用的设计模式(1)——单例模式

    <Practical Common Lisp>的作者 Peter Seibel 曾说,如果你需要一种模式,那一定是哪里出了问题.他所说的问题是指因为语言的天生缺陷,不得不去寻求和总结一种通 ...

  6. C#异步编程模型

    什么是异步编程模型 异步编程模型(Asynchronous Programming Model,简称APM)是C#1.1支持的一种实现异步操作的编程模型,虽然已经比较“古老”了,但是依然可以学习一下的 ...

  7. 每隔5s执行一次动作

    TimeSpan timespan; //第一次获取系统时间 DateTime d1 = DateTime.Now; while (true) { //第二次获取系统时间 DateTime d2 = ...

  8. Juniper 防火墙端口映射设置

    首先我们登陆到juniper防火墙控制界面 默认地址大家都知道(192.168.1.1) 默认用户和密码netsscreen 下面介绍登陆界面: 让我们开始配置吧 依次展开policy → Polic ...

  9. 深入理解java线程池—ThreadPoolExecutor

    几句闲扯:首先,我想说java的线程池真的是很绕,以前一直都感觉新建几个线程一直不退出到底是怎么实现的,也就有了后来学习ThreadPoolExecutor源码.学习源码的过程中,最恶心的其实就是几种 ...

  10. CPU调度

    概念 1.控制,协调进程对CPU的竞争,按一定的调度算法从就绪队列中选择一个进程把CPU的使用权交给被选中的进程, 如果没有就绪进程,系统会安排一个系统空闲进程或idle进程 cpu调度要解决的三个问 ...