题目链接:http://poj.org/problem?id=2155

Matrix

Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 32950   Accepted: 11943

Description

Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row and j-th column. Initially we have A[i, j] = 0 (1 <= i, j <= N).

We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.

1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2). 
2. Q x y (1 <= x, y <= n) querys A[x, y]. 

Input

The first line of the input is an integer X (X <= 10) representing the number of test cases. The following X blocks each represents a test case.

The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2 y2", which has been described above.

Output

For each querying output one line, which has an integer representing A[x, y].

There is a blank line between every two continuous test cases.

Sample Input

1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1

Sample Output

1
0
0
1

Source

POJ Monthly,Lou Tiancheng

题意概括:

有一个初始值为0的N*N的二维矩阵,有T次操作,每次操作有两种选择:

C : 修改以(x1, y1)为左上角(x2, y2)为右下角的矩阵的值(0和1互换)

Q:查询(x, y)的值为 0 或者 为 1;

解题思路:

涉及到多次区间修改和区间查询的优先考虑线段树和树状数组,这道题巧妙之处在于灵活运用树状数组的前缀和,把区间修改转换单点修改,一维需要标记两个点而二维需要标记四个点,一个点用于发挥效果,另外三个点用于消除效果,因为树状数组维护的是前缀和,而对于二维树状数组,查询的则是以(1,1)为左上角,(x,y)为右下角的矩阵的和。

第二就是我们可以借助修改次数的奇偶性来判断该点的值为 0 / 1;

例如:N = 3;C:x1 = 1, y1 = 1, x2 = 2, y2 = 2;

1   1
  (x,y)  
1   1

(因为我们只需要知道奇偶性,所以矩阵外的点加1即可消除效果)

AC code:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#define ll long long int;
#define INF 0x3f3f3f3f
using namespace std;
const int MAXN = 1e3+; int mmp[MAXN][MAXN];
int N, T; int lowbit(int x)
{
return x&(-x);
} void add(int x, int y, int value)
{
for(int i = x; i <= N; i += lowbit(i))
for(int j = y; j <= N; j += lowbit(j))
mmp[i][j]+=value;
} int sum(int x, int y)
{
int res = ;
for(int i = x; i > ; i -= lowbit(i))
for(int j = y; j > ; j -= lowbit(j))
res+=mmp[i][j];
return res;
} void init()
{
for(int i = ; i <= N; i++)
for(int j = ; j <= N; j++)
mmp[i][j] = ;
} int main()
{
int T_case;
char com[];
int x, y, x1, x2, y1, y2;
scanf("%d", &T_case);
while(T_case--)
{
scanf("%d%d", &N, &T);
init();
while(T--)
{
scanf("%s", &com);
if(com[] == 'C')
{
scanf("%d%d%d%d", &x1, &y1, &x2, &y2);
add(x1, y1, );
add(x2+, y1, );
add(x1, y2+, );
add(x2+, y2+, );
}
else if(com[] == 'Q')
{
scanf("%d%d", &x, &y);
int res = ;
res = sum(x, y);
// printf("res: %d\n", res);
if(res%) printf("1\n");
else printf("0\n");
}
}
puts("");
}
return ;
}

POJ 2155 Matrix【二维树状数组+YY(区间计数)】的更多相关文章

  1. POJ 2155 Matrix(二维树状数组,绝对具体)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20599   Accepted: 7673 Descripti ...

  2. poj 2155 Matrix (二维树状数组)

    题意:给你一个矩阵开始全是0,然后给你两种指令,第一种:C x1,y1,x2,y2 就是将左上角为x1,y1,右下角为x2,y2,的这个矩阵内的数字全部翻转,0变1,1变0 第二种:Q x1 y1,输 ...

  3. POJ 2155:Matrix 二维树状数组

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 21757   Accepted: 8141 Descripti ...

  4. POJ 2155 Matrix (二维线段树入门,成段更新,单点查询 / 二维树状数组,区间更新,单点查询)

    题意: 有一个n*n的矩阵,初始化全部为0.有2中操作: 1.给一个子矩阵,将这个子矩阵里面所有的0变成1,1变成0:2.询问某点的值 方法一:二维线段树 参考链接: http://blog.csdn ...

  5. [poj2155]Matrix(二维树状数组)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25004   Accepted: 9261 Descripti ...

  6. 【poj2155】Matrix(二维树状数组区间更新+单点查询)

    Description Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the ...

  7. POJ 2029 (二维树状数组)题解

    思路: 大力出奇迹,先用二维树状数组存,然后暴力枚举 算某个矩形区域的值的示意图如下,代码在下面慢慢找... 代码: #include<cstdio> #include<map> ...

  8. poj----2155 Matrix(二维树状数组第二类)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 16950   Accepted: 6369 Descripti ...

  9. POJ2155【二维树状数组,区间修改,点查询?】【又被输入输出坑】

    这题反反复复,到现在才过. 这道题就是树状数组的逆用,用于修改区间内容,查询点的值. 如果单纯就这个奇偶数来判的话,似乎这个思路比较好理解. 看了一下国家集训队论文(囧),<关于0与1在信息学奥 ...

随机推荐

  1. UI特效资料-----ShaderWeaver

    主页:www.shaderweaver.com教程:www.shaderweaver.com/tutorials.html 1.一款插件,挺强大的 ShaderWeaver使用教程-基本操作介绍 ht ...

  2. unity项目架构

    Unity 游戏框架搭建 (一) 概述Unity 游戏框架搭建 (二) 单例的模板Unity 游戏框架搭建 (三) MonoBehaviour单例的模板Unity 游戏框架搭建 (四) 简易有限状态机 ...

  3. pat1003. Emergency (25)

    1003. Emergency (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue As an emerg ...

  4. 守护客户数据价值:企业级NewSQL HTAP分布式云TBase架构详解

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 作者:jasonys,隶属于腾讯技术工程事业群数据平台部,负责TBase数据的技术研发和架构设计,有超过10年的数据库内核开发设计经验,完成 ...

  5. Python之装饰器、迭代器和生成器

    在学习python的时候,三大“名器”对没有其他语言编程经验的人来说,应该算是一个小难点,本次博客就博主自己对装饰器.迭代器和生成器理解进行解释. 为什么要使用装饰器 什么是装饰器?“装饰”从字面意思 ...

  6. java selector

    java selector使用select轮询注册到selector中的channel,如果有channel准备好注册的事件,select()返回,返回值为可以操作的channel的个数.通过sele ...

  7. Django之(URL)路由系统

    路由系统 简而言之,django的路由系统作用就是使views里面处理数据的函数与请求的url建立映射关系.使请求到来之后,根据urls.py里的关系条目,去查找到与请求对应的处理方法,从而返回给客户 ...

  8. PAT 1070 Mooncake

    题目意思能搞成这样我也是服了这个女人了 #include <cstdio> #include <cstdlib> #include <vector> #includ ...

  9. Csharp: Send Email

    /// <summary> /// 發送郵件 /// 塗聚文 /// 20130816 /// </summary> /// <param name="to&q ...

  10. Stage6--Python简单爬虫

    正则表达式简单介绍 正则表达式(regular expression)描述了一种字符串匹配的模式,可以用来检查一个串是否含有某种子串.将匹配的子串做替换或者从某个串中取出符合某个条件的子串等. 字符 ...