题目链接

戳这

Solution

首先考虑最暴力的dp

我们设:

\(f[i]\)表示选择\(i\)以后所能形成的满足条件的子序列的最大值

\(minx[i]\)表示\(i\)能转换为的最小值

\(maxx[i]\)表示\(i\)能转换为的最大值

于是转移的条件显然了:

  1. \(i>j\)
  2. \(minx[i]>=a[j]\)
  3. \(a[i]>=maxx[i]\)

对于暴力直接枚举j转移就好了,但却只有50分,想想正解。

条件很明显是三维偏序问题啊。我们可以随便用一些数据结构:

如: cdq分治,树套树什么的。这里就不详细介绍了

code

线段树+树状数组

#include<bits/stdc++.h>
#define rg register
#define file(x) freopen(x".in","r",stdin);freopen(x".out","w",stdout);
using namespace std;
int read() {
int x=0,f=1;
char c=getchar();
while(c<'0'||c>'9') f=(c=='-')?-1:1,c=getchar();
while(c>='0'&&c<='9') x=x*10+c-48,c=getchar();
return f*x;
}
struct node {
int l,r,v;
} a[100001*100];
int tot,root[100010];
void update(int &k,int l,int r,int pos,int v) {
if(k==0)
k=++tot;
a[k].v=max(a[k].v,v);
if(l==r)
return ;
int mid=(l+r)>>1;
if(pos<=mid) update(a[k].l,l,mid,pos,v);
else update(a[k].r,mid+1,r,pos,v);
}
int find(int k,int l,int r,int begin,int end) {
if(k==0)
return 0;
if(l==begin&&r==end)
return a[k].v;
int mid=(l+r)>>1;
if(end<=mid)
return find(a[k].l,l,mid,begin,end);
else if(begin>mid)
return find(a[k].r,mid+1,r,begin,end);
else return max(find(a[k].l,l,mid,begin,mid),find(a[k].r,mid+1,r,mid+1,end));
}
#define lowbit(x) (x&(-x))
void add(int x,int y,int v) {
while(x<=100005)
update(root[x],1,100005,y,v),x+=lowbit(x);
}
int sum(int x,int y) {
int js=0;
while(x)
js=max(find(root[x],1,100005,1,y),js),x-=lowbit(x);
return js;
}
int b[100010],minx[100010],maxx[100010];
int main() {
int n=read(),m=read(),x,y,ans=0;
for(int i=1; i<=n; i++)
b[i]=minx[i]=maxx[i]=read();
for(int i=1; i<=m; i++)
x=read(),y=read(),maxx[x]=max(maxx[x],y),minx[x]=min(minx[x],y);
for(int i=1; i<=n; i++) {
int js=sum(minx[i],b[i])+1;
ans=max(ans,js);
add(b[i],maxx[i],js);
}
cout<<ans;
}

「HEOI2016/TJOI2016」序列的更多相关文章

  1. 「HEOI2016/TJOI2016」排序

    「HEOI2016/TJOI2016」排序 题目大意 给定一个 \(1\) 到 \(n\) 的排列,每次可以对这个序列的一个区间进行升序/降序排序,求所有操作后第 \(q\) 个位置上的数字. 题解 ...

  2. 「HEOI2016/TJOI2016」 排序

    题目链接 戳我 \(Solution\) 这道题在线的做法不会,所以这里就只讲离线的做法. 因为直接排序的话复杂度显然不对.但是如果数列为\(01\)串的话就可以让复杂度变成对的了 那么\(01\)串 ...

  3. 「HNOI 2016」 序列

    \(Description\) 给你一个序列,每次询问一个区间,求其所有子区间的最小值之和 \(Solution\) 这里要用莫队算法 首先令\(val\)数组为原序列 我们考虑怎么由一个区间\([l ...

  4. Loj #3059. 「HNOI2019」序列

    Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...

  5. cdq分治(hdu 5618 Jam's problem again[陌上花开]、CQOI 2011 动态逆序对、hdu 4742 Pinball Game、hdu 4456 Crowd、[HEOI2016/TJOI2016]序列、[NOI2007]货币兑换 )

    hdu 5618 Jam's problem again #include <bits/stdc++.h> #define MAXN 100010 using namespace std; ...

  6. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  7. 洛谷 P4093 [HEOI2016/TJOI2016]序列 解题报告

    P4093 [HEOI2016/TJOI2016]序列 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能会变化,但同一个时刻最多只有一 ...

  8. AC日记——「SDOI2017」序列计数 LibreOJ 2002

    「SDOI2017」序列计数 思路: 矩阵快速幂: 代码: #include <bits/stdc++.h> using namespace std; #define mod 201704 ...

  9. loj #2051. 「HNOI2016」序列

    #2051. 「HNOI2016」序列 题目描述 给定长度为 n nn 的序列:a1,a2,⋯,an a_1, a_2, \cdots , a_na​1​​,a​2​​,⋯,a​n​​,记为 a[1: ...

随机推荐

  1. 实例甜点 Unreal Engine 4迷你教程(3)之用C++改变Image小部件的其它属性

    完成本迷你教程之前,请前往完成以下迷你教程: ·实例甜点 Unreal Engine 4迷你教程(2)之用C++改变Image小部件的颜色: 在上一次的迷你教程的LearnWidgets工程上进行(如 ...

  2. PHP ! 非运算符 与 if 判断深入研究

    !非 !x 如果x不为true则返回true. 我们经常用!进行一些判断. 看实例,我们发现经过'非'处理之后,都转化成了bool值.用于if判断很有用. var_dump(!0); // bool( ...

  3. Oracle 复杂查询(1)

    一.复杂查询 1. 列出至少有一个员工的所有部门编号.名称,并统计出这些部门的平均工资.最低工资.最高工资. 1.确定所需要的数据表: emp表:可以查询出员工的数量: dept表:部门名称: emp ...

  4. mysql安装与基本管理

    一.MySQL介绍 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下公司.MySQL 最流行的关系型数据库管理系统,在 WEB 应用方面MySQL是 ...

  5. jQuery中获取相对文档的坐标的方法是什么?

    offset(),获取匹配元素在当前视口的相对偏移.返回的对象包含两个整型属性:top 和 left,以像素计.此方法只对可见元素有效. position()获取匹配元素相对定位父级的偏移.没有定位父 ...

  6. 通过DG_BROKE搭建Oracle11g_adg

    1.环境 db_primary db_stanby db版本 11.2.0.4.0 11.2.0.4.0 os版本 centos 6.4 centos 6.4 db_unique_name newte ...

  7. 由ffmpeg中avformat模块中的 URL_SCHEME_CHARS 看 strspn( ) 的妙用

    在ffmpeg的avformat 模块中avio.c 对 URL_SCHEME_CHARS 的定义: #define URL_SCHEME_CHARS \ "abcdefghijklmnop ...

  8. python利用utf-8编码判断中文字符

    下面这个小工具包含了 判断unicode是否是汉字,数字,英文,或者其他字符. 全角符号转半角符号. unicode字符串归一化等工作. 还有一个能处理多音字的汉字转拼音的程序,还在整理中. #!/u ...

  9. 用户“*****”不具有所需的权限。请验证授予了足够的权限并且解决了 Windows 用户帐户控制(UAC)限制问题。

    错误: 用户“ts\***”不具有所需的权限.请验证授予了足够的权限并且解决了 Windows 用户帐户控制(UAC)限制问题. 解决: 当从客户端用IE连接http://xxx.xxx.xxx.xx ...

  10. 4-3 线程安全性-原子性-synchronized

    原子性它提供了互斥访问,同一时刻只能有一个线程来对它进行操作.能保证同一时刻只有一个线程来对其进行操作的,除了Atomic包之外,还有锁.JDK提供锁主要分两种,synchronized是一个Java ...