(转)关于INF为0x3f3f3f3f
转自https://blog.csdn.net/jiange_zh/article/details/50198097
在算法竞赛中,我们常常需要用到一个“无穷大”的值,对于我来说,大多数时间我会根据具体问题取一个99999999之类的数(显得很不专业啊!)
在网上看别人代码的时候,经常会看到他们把INF设为0x7fffffff,奇怪为什么设一个这么奇怪的十六进制数,一查才知道,因为这是32-bit int的最大值。如果这个无穷大只用于一般的比较(比如求最小值时min变量的初值),那么0x7fffffff确实是一个完美的选择。
但是更多情况下,0x7fffffff并不是一个好的选择,比如在最短路径算法中,我们使用松弛操作:
if (d[u]+w[u][v]<d[v]) d[v]=d[u]+w[u][v];
如果u,v之间没有边,那么w[u][v]=INF,如果我们的INF取0x7fffffff,那么d[u]+w[u][v]会溢出而变成负数,我们的松弛操作便出错了!
准确来说,0x7fffffff不能满足“无穷大加一个有穷的数依然是无穷大”这个条件,它会变成了一个很小的负数。
更进一步的,如果有一个数能够满足“无穷大加无穷大依然是无穷大”,那么就更好了!
前阵子无意中看到了一个不一样的取值,INF=0x3f3f3f3f,这时我又郁闷了,这个值又代表的是什么?于是我去寻找答案,发现这个值的设置真的很精妙!
0x3f3f3f3f的十进制是1061109567,是10^9级别的(和0x7fffffff一个数量级),而一般场合下的数据都是小于10^9的,所以它可以作为无穷大使用而不致出现数据大于无穷大的情形。
另一方面,由于一般的数据都不会大于10^9,所以当我们把无穷大加上一个数据时,它并不会溢出(这就满足了“无穷大加一个有穷的数依然是无穷大”),事实上0x3f3f3f3f+0x3f3f3f3f=2122219134,这非常大但却没有超过32-bit int的表示范围,所以0x3f3f3f3f还满足了我们“无穷大加无穷大还是无穷大”的需求。
最后,0x3f3f3f3f还能给我们带来一个意想不到的额外好处:
如果我们想要将某个数组清零,我们通常会使用memset(a,0,sizeof(a)),方便又高效,但是当我们想将某个数组全部赋值为无穷大时,就不能使用memset函数而得自己写循环了,因为memset是按字节操作的,它能够对数组清零是因为0的每个字节都是0(一般我们只有赋值为-1和0的时候才使用它)。现在好了,如果我们将无穷大设为0x3f3f3f3f,那么奇迹就发生了,0x3f3f3f3f的每个字节都是0x3f!所以要把一段内存全部置为无穷大,我们只需要memset(a,0x3f,sizeof(a))。
所以在通常的场合下,0x3f3f3f3f真的是一个非常棒的选择!
(转)关于INF为0x3f3f3f3f的更多相关文章
- bzoj 4127: Abs 树链剖分
4127: Abs Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 11 Solved: 5[Submit][Status][Discuss] Des ...
- SGU 185.Two shortest (最小费用最大流)
时间限制:0.25s 空间限制:4M 题意: 在n(n<=400)个点的图中,找到并输出两条不想交的最短路.不存在输出“No sulotion”: Solution: 最小费用最大流 建图与po ...
- [SinGuLaRiTy] 组合数学题目复习
[SinGuLaRiTy] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [CQBZOJ 2011] 计算系数 题目描述 给定一个多项式( ...
- BM递推
从别的大佬处看到的模板 #include<bits/stdc++.h> #define fi first #define se second #define INF 0x3f3f3f3f ...
- 洛谷 P2300 合并神犇 解题报告
P2300 合并神犇 题目背景 loidc来到了NOI的赛场上,他在那里看到了好多神犇. 题目描述 神犇们现在正排成一排在刷题.每个神犇都有一个能力值p[i].loidc认为坐在附近的金牌爷能力参差不 ...
- 【每日dp】 Gym - 101889E Enigma 数位dp 记忆化搜索
题意:给你一个长度为1000的串以及一个数n 让你将串中的‘?’填上数字 使得该串是n的倍数而且最小(没有前导零) 题解:dp,令dp[len][mod]为是否出现过 填到第len位,余数为mod 的 ...
- HDU-2612.Find way .(不同起点不同终点的BFS)
我要被这个好用的memset气死了...... 真香 #include <cstring> #include <string> int main () { ]; memset( ...
- [八省联考2018]林克卡特树lct——WQS二分
[八省联考2018]林克卡特树lct 一看这种题就不是lct... 除了直径好拿分,别的都难做. 所以必须转化 突破口在于:连“0”边 对于k=0,我们求直径 k=1,对于(p,q)一定是从p出发,走 ...
- 【Ray Tracing in One Weekend 超详解】 光线追踪1-4
我们上一篇写了Chapter5 的第一个部分表面法线,那么我们来学剩下的部分,以及Chapter6. Chapter5:Surface normals and multiple objects. 我们 ...
随机推荐
- 关于"人工智能Python""系统环境变量设置步骤
最近无论是JAVA的环境变量配置,还是Python环境变量配置都有学生问我,我在这里写一下回答,当然我以配置Python的环境变脸来举例.首先需要确定本机电脑上安装上了Python 首先解释一下为什么 ...
- javascript总结11:JavaScript的自增自减
1 自增自减 1.1 自增写法i++ 作用:在不参与运算的情况下,i++和++i都是在变量的基础加1 var n1 =123; //n1++ 等价于 n1 = n1 +1; ++n1 //等价于 n1 ...
- HDU 4430 Yukari's Birthday (二分)
题意:有 n 个蜡烛,让你插到蛋糕上,每一层要插 k^i个根,第0层可插可不插,插的层数是r,让 r * k 尽量小,再让 r 尽量小,求r 和 k. 析:首先先列出方程来,一个是不插的一个是插的,比 ...
- c# 求数组的最大值
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- ios app提交之前需要哪几个证书
1.遇到的问题 一款App在别人的机器上开发和发布,现在迭代更新和开发需要在一台新mac机上开发和发布. (使用同一个开发者账号)问题: 1.在新mac机器上开发并导入真机测试,是不是需要从别人的机器 ...
- 借助百度云API进行人脸识别
前言:本篇博客是笔者第一次使用百度云api进行人脸检测,主要内容包括两部分,一是获取接口,二是借助接口进行人脸检测.笔者也是初步了解这方面的内容,也是参考了杂七杂八的博文,内容可能存在错误及其他毛病, ...
- Launch VINS example (Euroc dataset) in RTAB-MAP
$ roslaunch rtabmap_ros euroc_datasets.launch args:="-d RGBD/CreateOccupancyGrid false Odom/Str ...
- 「BZOJ1433」[ZJOI2009] 假期的宿舍(二分图,网络流)
题目描述 学校放假了 · · · · · · 有些同学回家了,而有些同学则有以前的好朋友来探访,那么住宿就是一个问题.比如 A 和 B 都是学校的学生,A 要回家,而 C 来看B,C 与 A 不认识. ...
- webstorm激活服务器地址
2017.1.4版本可用 http://idea.imsxm.com/
- UX | 最小可行性技能
简评:本文介绍了最小 UX 需要技能(可以看成设计版 MVP),包括用不同视角看事情,从回馈中学习等等 ~ 呐,可能刚入门设计的时候,会让一堆工具弄得眼花缭乱.其实呢,并不一定要每样都会使用,举一反三 ...