整理摘自 https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin/16001

Micro- and macro-averages (for whatever metric) will compute slightly different things, and thus their interpretation differs. A macro-average will compute the metric independently for each class and then take the average (hence treating all classes equally), whereas a micro-average will aggregate the contributions of all classes to compute the average metric. In a multi-class classification setup, micro-average is preferable if you suspect there might be class imbalance (i.e you may have many more examples of one class than of other classes).

To illustrate why, take for example precision Pr=TP / (TP+FP). Let's imagine you have a One-vs-All(there is only one correct class output per example) multi-class classification system with four classes and the following numbers when tested:

  • Class A: 1 TP and 1 FP
  • Class B: 10 TP and 90 FP
  • Class C: 1 TP and 1 FP
  • Class D: 1 TP and 1 FP

You can see easily that PrA=PrC=PrD=0.5 , whereas PrB=0.1.

  • A macro-average will then compute: Pr=0.5+0.1+0.5+0.54=0.4
  • A micro-average will compute: Pr=1+10+1+12+100+2+2=0.123

宏查准率:这些类别中是否有尽可能多的类别的查准率尽可能高。-- 侧重各个类别是否预测准确

微查准率:这多组实验中,预测准确的数据占总的预测数据的比例。-- 侧重预测准确的数据的比例

These are quite different values for precision. Intuitively, in the macro-average the "good" precision (0.5) of classes A, C and D is contributing to maintain a "decent" overall precision (0.4). While this is technically true (across classes, the average precision is 0.4), it is a bit misleading, since a large number of examples are not properly classified. These examples predominantly correspond to class B, so they only contribute 1/4 towards the average in spite of constituting 94.3% of your test data. The micro-average will adequately capture this class imbalance, and bring the overall precision average down to 0.123 (more in line with the precision of the dominating class B (0.1)).

当class-imblance已知,但仍要采用macro-average时,需要采取的措施:

1. 报告macro-average + standard deviation(标准差) (对于>=3的多分类任务)

2. 加权macro-average  (考虑样本数的影响)

For computational reasons, it may sometimes be more convenient to compute class averages and then macro-average them. If class imbalance is known to be an issue, there are several ways around it. One is to report not only the macro-average, but also its standard deviation (for 3 or more classes). Another is to compute a weighted macro-average, in which each class contribution to the average is weighted by the relative number of examples available for it. In the above scenario, we obtain:

1. Prmacro−mean=0.25·0.5+0.25·0.1+0.25·0.5+0.25·0.5=0.4

Prmacro−stdev=0.173

2. Prmacro−weighted= 2/106 * 0.5 + 100 / 106 * 0.1 + 2 / 106 * 0.5 + 2 / 106 * 0.5

= 0.0189·0.5+0.943·0.1+0.0189·0.5+0.0189·0.5=0.009+0.094+0.009+0.009=0.123

The large standard deviation (0.173) already tells us that the 0.4 average does not stem from a uniform precision among classes, but it might be just easier to compute the weighted macro-average, which in essence is another way of computing the micro-average.

Micro Average vs Macro average Performance in a Multiclass classification setting的更多相关文章

  1. 机器学习--Micro Average,Macro Average, Weighted Average

    根据前面几篇文章我们可以知道,当我们为模型泛化性能选择评估指标时,要根据问题本身以及数据集等因素来做选择.本篇博客主要是解释Micro Average,Macro Average,Weighted A ...

  2. Spark2.0机器学习系列之5:随机森林

    概述 随机森林是决策树的组合算法,基础是决策树,关于决策树和Spark2.0中的代码设计可以参考本人另外一篇博客: http://www.cnblogs.com/itboys/p/8312894.ht ...

  3. Spark2.0机器学习系列之3:决策树

    概述 分类决策树模型是一种描述对实例进行分类的树形结构. 决策树可以看为一个if-then规则集合,具有“互斥完备”性质 .决策树基本上都是 采用的是贪心(即非回溯)的算法,自顶向下递归分治构造. 生 ...

  4. Micro和Macro性能学习【转载】

    转自:https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance- ...

  5. Maximum Average Subarray

    Given an array with positive and negative numbers, find the maximum average subarray which length sh ...

  6. 性能分析_linux服务器CPU_Load Average

    CPU度量Load Average 1.  概念介绍 1.1  Linux系统进程状态 在linux中,process有以下状态: runnable (就绪状态):blocked waiting fo ...

  7. LINQ 学习路程 -- 查询操作 Average Count Max Sum

    IList<, , }; var avg = intList.Average(); Console.WriteLine("Average: {0}", avg); IList ...

  8. F1 score,micro F1score,macro F1score 的定义

    F1 score,micro F1score,macro F1score 的定义 2018年09月28日 19:30:08 wanglei_1996 阅读数 976   本篇博客可能会继续更新 最近在 ...

  9. [LeetCode] 805. Split Array With Same Average 用相同均值拆分数组

    In a given integer array A, we must move every element of A to either list B or list C. (B and C ini ...

随机推荐

  1. PC Android IOS资料同步更新

    在程序发布后,特别是IOS版本,想替换里边的内容,重新发布版本很是麻烦.我们就可以动态用AssetBundle更新内容. 如果是自定义二进制文件,先要改为“.Bytes”后缀的文件,Unity会把这个 ...

  2. java使用JSCH连接FTP(Linux服务器)上传文件到Linux服务器

    首先需要用到jsch-0.1.54.jar 包: 链接: https://pan.baidu.com/s/1kZR6MqwpCYht9Pp_D6NKQw 密码: gywx 直接上代码: package ...

  3. JavaScript自己整理的基础-01

    1.JavaScript 简介: JavaScript是互联网上最流行的脚本语言,所有现代的HTML都使用JavaScript.既然是脚本语言,那么它的特点就有一下三种: (1)弱类型: (2)解释型 ...

  4. 涉及自制系统AS的几个协议总结

    IGP(Interior Gateway Protocol): 内部网关协议的总称:其下有RIP和OSPF EGP(External Gateway Protocol): 外部网关协议的总称:目前使用 ...

  5. C#中rpt的数据类型和Oracle中数据类型的匹配

    Oracle中number数据类型对应C#中decimal数据类型,结果是整数 Oracle中number数据类型对应C#中int32数据类型,结果是小数,保留两位小数 Oracle中中date类型数 ...

  6. Flask—03-bootstrap与表单

    bootstrap与表单 Bootstrap是美国Twitter公司的设计师Mark Otto和Jacob Thornton合作基于HTML.CSS.JavaScript 开发的简洁.直观.强悍的前端 ...

  7. spring入门(二) 使用注解代替xml配置

    1.导包(略) 2.applicationContext.xml如下: <?xml version="1.0" encoding="UTF-8"?> ...

  8. oracle中lock和latch的用途

    本文向各位阐述Oracle的Latch机制,Latch,用金山词霸翻译是门插栓,闭锁,专业术语叫锁存器,我开始接触时就不大明白为什么不写Lock,不都是锁吗?只是翻译不同而以?研究过后才知道两者有很大 ...

  9. JDBC相关

    //原生jdbc操作案例 import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; i ...

  10. flex 遇到white-space:nowrap

    背景,做一个前面图片宽度固定,后面宽度自适应,使用到了flex布局,但是想让后面div里文字不换行,超出以点点表示时,这时布局就乱了,查了下,原来flex布局与white-space:nowrap有影 ...