整理摘自 https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance-in-a-multiclass-classification-settin/16001

Micro- and macro-averages (for whatever metric) will compute slightly different things, and thus their interpretation differs. A macro-average will compute the metric independently for each class and then take the average (hence treating all classes equally), whereas a micro-average will aggregate the contributions of all classes to compute the average metric. In a multi-class classification setup, micro-average is preferable if you suspect there might be class imbalance (i.e you may have many more examples of one class than of other classes).

To illustrate why, take for example precision Pr=TP / (TP+FP). Let's imagine you have a One-vs-All(there is only one correct class output per example) multi-class classification system with four classes and the following numbers when tested:

  • Class A: 1 TP and 1 FP
  • Class B: 10 TP and 90 FP
  • Class C: 1 TP and 1 FP
  • Class D: 1 TP and 1 FP

You can see easily that PrA=PrC=PrD=0.5 , whereas PrB=0.1.

  • A macro-average will then compute: Pr=0.5+0.1+0.5+0.54=0.4
  • A micro-average will compute: Pr=1+10+1+12+100+2+2=0.123

宏查准率:这些类别中是否有尽可能多的类别的查准率尽可能高。-- 侧重各个类别是否预测准确

微查准率:这多组实验中,预测准确的数据占总的预测数据的比例。-- 侧重预测准确的数据的比例

These are quite different values for precision. Intuitively, in the macro-average the "good" precision (0.5) of classes A, C and D is contributing to maintain a "decent" overall precision (0.4). While this is technically true (across classes, the average precision is 0.4), it is a bit misleading, since a large number of examples are not properly classified. These examples predominantly correspond to class B, so they only contribute 1/4 towards the average in spite of constituting 94.3% of your test data. The micro-average will adequately capture this class imbalance, and bring the overall precision average down to 0.123 (more in line with the precision of the dominating class B (0.1)).

当class-imblance已知,但仍要采用macro-average时,需要采取的措施:

1. 报告macro-average + standard deviation(标准差) (对于>=3的多分类任务)

2. 加权macro-average  (考虑样本数的影响)

For computational reasons, it may sometimes be more convenient to compute class averages and then macro-average them. If class imbalance is known to be an issue, there are several ways around it. One is to report not only the macro-average, but also its standard deviation (for 3 or more classes). Another is to compute a weighted macro-average, in which each class contribution to the average is weighted by the relative number of examples available for it. In the above scenario, we obtain:

1. Prmacro−mean=0.25·0.5+0.25·0.1+0.25·0.5+0.25·0.5=0.4

Prmacro−stdev=0.173

2. Prmacro−weighted= 2/106 * 0.5 + 100 / 106 * 0.1 + 2 / 106 * 0.5 + 2 / 106 * 0.5

= 0.0189·0.5+0.943·0.1+0.0189·0.5+0.0189·0.5=0.009+0.094+0.009+0.009=0.123

The large standard deviation (0.173) already tells us that the 0.4 average does not stem from a uniform precision among classes, but it might be just easier to compute the weighted macro-average, which in essence is another way of computing the micro-average.

Micro Average vs Macro average Performance in a Multiclass classification setting的更多相关文章

  1. 机器学习--Micro Average,Macro Average, Weighted Average

    根据前面几篇文章我们可以知道,当我们为模型泛化性能选择评估指标时,要根据问题本身以及数据集等因素来做选择.本篇博客主要是解释Micro Average,Macro Average,Weighted A ...

  2. Spark2.0机器学习系列之5:随机森林

    概述 随机森林是决策树的组合算法,基础是决策树,关于决策树和Spark2.0中的代码设计可以参考本人另外一篇博客: http://www.cnblogs.com/itboys/p/8312894.ht ...

  3. Spark2.0机器学习系列之3:决策树

    概述 分类决策树模型是一种描述对实例进行分类的树形结构. 决策树可以看为一个if-then规则集合,具有“互斥完备”性质 .决策树基本上都是 采用的是贪心(即非回溯)的算法,自顶向下递归分治构造. 生 ...

  4. Micro和Macro性能学习【转载】

    转自:https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performance- ...

  5. Maximum Average Subarray

    Given an array with positive and negative numbers, find the maximum average subarray which length sh ...

  6. 性能分析_linux服务器CPU_Load Average

    CPU度量Load Average 1.  概念介绍 1.1  Linux系统进程状态 在linux中,process有以下状态: runnable (就绪状态):blocked waiting fo ...

  7. LINQ 学习路程 -- 查询操作 Average Count Max Sum

    IList<, , }; var avg = intList.Average(); Console.WriteLine("Average: {0}", avg); IList ...

  8. F1 score,micro F1score,macro F1score 的定义

    F1 score,micro F1score,macro F1score 的定义 2018年09月28日 19:30:08 wanglei_1996 阅读数 976   本篇博客可能会继续更新 最近在 ...

  9. [LeetCode] 805. Split Array With Same Average 用相同均值拆分数组

    In a given integer array A, we must move every element of A to either list B or list C. (B and C ini ...

随机推荐

  1. JDBC执行存储过程的四种情况 (转)

    本文主要是总结 如何实现 JDBC调用Oracle的存储过程,从以下情况分别介绍: [1].只有输入IN参数,没有输出OUT参数 [2].既有输入IN参数,也有输出OUT参数,输出是简单值(非列表) ...

  2. 我和我的广告前端代码(六):webpack工程合并、也许我不需要gulp

    随着年初开始使用webpack重构公司的广告代码,已经有将近一年的时间了,需求也渐渐的稳定了.我想也是时候将这几个工程整理一下,顺带着处理一些历史问题. 由于当年各个业务线没有整合.需求也没有固定,考 ...

  3. Python—XML

    什么是xml XML 指可扩展标记语言(EXtensible Markup Language) XML 是一种标记语言,很类似 HTML XML 的设计宗旨是传输数据,而非显示数据 XML 标签没有被 ...

  4. deep learning学习记录三

    deep learning,这几年有多火!! imagenet比赛,大家今年都是基于去年的基础上改进和应用的,效果比去年提升当然. 在deep learning方向,hinton, benjio, l ...

  5. 用c#语言编写银行利率

    sing System;using System.Collections.Generic;using System.Linq;using System.Text; namespace ConsoleA ...

  6. ABAP术语-Business Connector

    Business Connector 原文:http://www.cnblogs.com/qiangsheng/archive/2007/12/27/1016379.html XML-based st ...

  7. 使用Ansible实现nginx+keepalived高可用负载均衡自动化部署

    本篇文章记录通过Ansible自动化部署nginx的负载均衡高可用,前端代理使用nginx+keepalived,端web server使用3台nginx用于负载效果的体现,结构图如下: 部署前准备工 ...

  8. centos下安装docker以及docker-composer

    背景 docker已经出来了很久,而我一直想混迹到docker大军中进行冲锋陷阵,恰逢公司项目的需要,因此今天玩了一把docker的安装.使用Docker 一键部署 LNMP+Redis 环境 事先准 ...

  9. sublime3常用插件总结

    本人之前使用的是webstorm,后来改用sublime,渐渐的爱上了它的快!(自行体会) 正式介绍sublime3常用的一些插件,安装流程不再赘述! SublimeTmpl 创建常用文件初始模板,必 ...

  10. C# 用HttpWebRequest模拟一个虚假的IP伪造ip

    有人会说:IP验证是在TCP层完成的,不是HTTP层完成的,如果伪造IP的话可能连TCP的三次握手都完不成.我这里说的不是完全意义的伪造.如果你使用透明代理上网,那么在透明代理发送给服务器端的HTTP ...