时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

上一回我们已经将所有有问题的相亲情况表剔除了,那么接下来要做的就是安排相亲了。因为过年时间并不是很长,所以姑姑希望能够尽可能在一天安排比较多的相亲。由于一个人同一天只能和一个人相亲,所以要从当前的相亲情况表里选择尽可能多的组合,且每个人不会出现两次。不知道有没有什么好办法,对于当前给定的相亲情况表,能够算出最多能同时安排多少组相亲呢?

同样的,我们先将给定的情况表转换成图G=(V,E)。在上一回中我们已经知道这个图可以被染成黑白两色。不妨将所有表示女性的节点记为点集A,表示男性的节点记为点集B。则有A∪B=V。由问题可知所有边e的两个端点分别属于AB两个集合。则可以表示成如下的图:

同样的,我们将所有的边分为两个集合。集合S和集合M,同样有S∪M=E。边集S表示在这一轮相亲会中将要进行的相亲,边集M表示在不在这一次进行。对于任意边(u,v) ∈ S,我们称u和v为一组匹配,它们之间相互匹配。在图G,我们将边集S用实线表示,边集M用虚线表示。得到下图:

则原问题转化为,最多能选择多少条边到集合S,使得S集合中任何两条边不相邻(即有共同的顶点)。显然的,|S|<=Min{|A|, |B|}。

那么能不能找到一个算法,使得能够很容易计算出尽可能多的边能够放入集合S?我们不妨来看一个例子:

对于已经匹配的点我们先不考虑,我们从未匹配的点来做。这里我们选择A集合中尚未匹配的点(A3和A4)考虑:

对于A3点,我们可以发现A3与B4右边相连,且都未匹配。则直接将(A3,B4)边加入集合S即可。

对于A4点,我们发现和A4相连的B3,B4点都已经匹配了。但是再观察可以发现,如果我们将A2和B2相连,则可以将B3点空出来。那么就可以同时将(A2,B2),(A4,B3)相连。将原来的一个匹配变成了两个匹配。

让我们来仔细看看这一步:我们将这次变换中相关联的边标记出来,如下图所示紫色的3条边(A2,B2),(A2,B3),(A4,B3)。

这三条边构成了一条路径,可以发现这条路径有个非常特殊的性质。虚线和实线相互交错,并且起点和终点都是尚未匹配的点,且属于两个不同的集合。我们称这样的路径为交错路径。

再进一步分析,对于任意一条交错路径,虚线的数量一定比实线的数量多1。我们将虚线和实线交换一下,就变成了下面的图:

在原来1个匹配的基础上,我们得到了2个新的匹配,S集合边的数量也增加了1。并且原来在已经匹配的点仍然是已经匹配的状态。

再回头看看A3点匹配时的情况:对于(A3,B4)这一条路径,同样满足了交错路径的性质。

至此我们得到了一个找新匹配的有效算法:

选取一个未匹配的点,查找是否存在一条以它为起点的交错路径。若存在,将该交错路径的边虚实交换。否则在当前的情况下,该点找不到可以匹配的点。

又有对于已经匹配的点,该算法并不会改变一个点的匹配状态。所以当我们对所有未匹配的点都计算过后,仍然没有交错路径,则不可能找到更多的匹配。此时S集合中的边数即为最大边数,我们称为最大匹配数。

那么我们再一次梳理整个算法:

1. 依次枚举每一个点i; 
2. 若点i尚未匹配,则以此点为起点查询一次交错路径。

最后即可得到最大匹配数。

在这个基础上仍然有两个可以优化的地方:

1.对于点的枚举:当我们枚举了所有A中的点后,无需再枚举B中的点,就已经得到了最大匹配。
2.在查询交错路径的过程中,有可能出现Ai与Bj直接相连,其中Bj为已经匹配的点,且Bj之后找不到交错路径。之后又通过Ai查找到了一条交错路径{Ai,Bx,Ay,…,Az,Bj}延伸到Bj。由于之前已经计算过Bj没有交错路径,若此时再计算一次就有了额外的冗余。所以我们需要枚举每个Ai时记录B集合中的点是否已经查询过,起点不同时需要清空记录。

伪代码

输入

第1行:2个正整数,N,M(N表示点数 2≤N≤1,000,M表示边数1≤M≤5,000)
第2..M+1行:每行两个整数u,v,表示一条无向边(u,v)

输出

第1行:1个整数,表示最大匹配数

样例输入
5 4
3 2
1 3
5 4
1 5
样例输出
2
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int MAXN=;
vector<int> arc[MAXN];
int n,m;
int match[MAXN],vis[MAXN];
bool dfs(int u)
{
for(int i=;i<arc[u].size();i++)
{
int to=arc[u][i];
if(!vis[to])
{
vis[to]=;
int w=match[to];
if(w==-||dfs(w))//若to没有匹配或者之前与to匹配的w可以找到新的匹配,那么将u,v进行匹配
{
match[to]=u;
match[u]=to;
return true;
}
}
}
return false;
}
int max_flow()
{
int ans=;
memset(match,-,sizeof(match));
for(int i=;i<=n;i++)
{
if(match[i]==-)
{
memset(vis,,sizeof(vis));
if(dfs(i)) ans++;
}
}
return ans;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=;i<=n;i++) arc[i].clear();
for(int i=;i<m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
arc[u].push_back(v);
arc[v].push_back(u);
}
int res=max_flow();
printf("%d\n",res);
}
return ;
}

hihoCoder#1122(二分图最大匹配之匈牙利算法)的更多相关文章

  1. "《算法导论》之‘图’":不带权二分图最大匹配(匈牙利算法)

    博文“二分图的最大匹配.完美匹配和匈牙利算法”对二分图相关的几个概念讲的特别形象,特别容易理解.本文介绍部分主要摘自此博文. 还有其他可参考博文: 趣写算法系列之--匈牙利算法 用于二分图匹配的匈牙利 ...

  2. 二分图最大匹配(匈牙利算法)简介& Example hdu 1150 Machine Schedule

    二分图匹配(匈牙利算法) 1.一个二分图中的最大匹配数等于这个图中的最小点覆盖数 König定理是一个二分图中很重要的定理,它的意思是,一个二分图中的最大匹配数等于这个图中的最小点覆盖数.如果你还不知 ...

  3. 【hihocoder 1122】二分图二•二分图最大匹配之匈牙利算法

    [Link]:https://hihocoder.com/problemset/problem/1122 [Description] [Solution] 二分图匹配,匈牙利算法模板题; 这里我先把染 ...

  4. 二分图最大匹配:匈牙利算法的python实现

    二分图匹配是很常见的算法问题,一般用匈牙利算法解决二分图最大匹配问题,但是目前网上绝大多数都是C/C++实现版本,没有python版本,于是就用python实现了一下深度优先的匈牙利算法,本文使用的是 ...

  5. 51nod 2006 飞行员配对(二分图最大匹配) 裸匈牙利算法 求二分图最大匹配题

    题目: 题目已经说了是最大二分匹配题, 查了一下最大二分匹配题有两种解法, 匈牙利算法和网络流. 看了一下觉得匈牙利算法更好理解, 然后我照着小红书模板打了一遍就过了. 匈牙利算法:先试着把没用过的左 ...

  6. 【模板】二分图最大匹配(匈牙利算法)/洛谷P3386

    题目链接 https://www.luogu.com.cn/problem/P3386 题目大意 给定一个二分图,其左部点的个数为 \(n\),右部点的个数为 \(m\),边数为 \(e\),求其最大 ...

  7. 无权二分图最大匹配 HDU2063 匈牙利算法 || Hopcroft-Karp

    参考两篇比较好的博客 http://www.renfei.org/blog/bipartite-matching.html http://blog.csdn.net/thundermrbird/art ...

  8. [hihoCoder] #1122 : 二分图二•二分图最大匹配之匈牙利算法

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一回我们已经将所有有问题的相亲情况表剔除了,那么接下来要做的就是安排相亲了.因为过年时间并不是很长,所以姑姑希望能够尽可 ...

  9. hihocoder #1122 二分图二•二分图最大匹配之匈牙利算法(*【模板】应用 )

    梳理整个算法: 1. 依次枚举每一个点i: 2. 若点i尚未匹配,则以此点为起点查询一次交错路径. 最后即可得到最大匹配数. 在这个基础上仍然有两个可以优化的地方: 1.对于点的枚举:当我们枚举了所有 ...

随机推荐

  1. start、run、join

    首先得了解什么是主线程,当Java程序启动时,一个线程立刻运行,该线程通常叫做程序的主线程(main thread).主线程的重要性体现在两方面:1. 它是产生其他子线程的线程:2. 通常它必须最后完 ...

  2. Service Meth and SideCar

    本文转自:http://philcalcado.com/2017/08/03/pattern_service_mesh.html SideCar: SideCar就是与Application一起运行的 ...

  3. Linux 一键安装 webmin/virtualmin

    Webmin是一个可运行于Linux/freebsd的web界面的主机管理系统,而Virtualmin是一个基于Webmin的虚拟主机管理模块. webmin官方站: http://www.webmi ...

  4. Python面向对象的编程注意细节

    和前文一样,这了也是学习过程中,来源于网上各种资料的一个整合记录,希望能够帮到自己和大家: 主要的关注点是在使用class的时候,应该注意的一些细节: 1.在class里面,有了 __init__(s ...

  5. tp3.2关联模型 BELONGS_TO

    <?php namespace Home\Model; use Think\Model\RelationModel; class AttenModel extends RelationModel ...

  6. HRBUST 1717 字典树模板

    之前写字典树虽然很熟也能变化 但是一直是到了场上再乱写 写的很长 于是准备写个短点的板子 于是选了个水题 然而写出了1W个bug insert和query反而写的没什么问题.. L c[100050] ...

  7. 比较运算符in/instanceof/typeof 逻辑表达式||/&&

    1.比较运算符in in运算符希望它的左侧操作数是一个字符串或可以转换为字符串,希望它的右操作数是一个对象, 如果右侧的对象拥有一个名为左侧操作数值的属性名,那么表达式返回true, eg:var a ...

  8. jedis提纲

    A01 - jedis库介绍 A01 - 在多线程下使用Jedis A01 - Jedis的八种调用方式   A02 - API使用文档 A02 - Jedis代码编程使用(简单的使用)   A03 ...

  9. 解决Navicat连接mysql报错:1862 - Your password has expired. To log in you must change it using a client that supports expired passwords.

    今天尝试用Navicat连接mysql时,发现一个1862的报错问题: 后来参照这篇文章https://blog.csdn.net/u010513756/article/details/5073501 ...

  10. 移动端rem设置,自动更改html<font-size>

    <script> (function (doc, win) { var docEl = doc.documentElement, resizeEvt = 'orientationchang ...