Given a tree, you are supposed to tell if it is a complete binary tree.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (<=20) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N-1. Then N lines follow, each corresponds to a node, and gives the indices of the left and right children of the node. If the child does not exist, a "-" will be put at the position. Any pair of children are separated by a space.

Output Specification:

For each case, print in one line "YES" and the index of the last node if the tree is a complete binary tree, or "NO" and the index of the root if not. There must be exactly one space separating the word and the number.

Sample Input 1:

9
7 8
- -
- -
- -
0 1
2 3
4 5
- -
- -

Sample Output 1:

YES 8

Sample Input 2:

8
- -
4 5
0 6
- -
2 3
- 7
- -
- -

Sample Output 2:

NO 1

判断是否是完全二叉树,用字符串读入结点,然后转换,层序遍历,遇到儿子是空的就停止,看看队列里是否是n个结点。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n,v[],root = -,q[],head = ,tail = ;
char l[],r[];
struct Node
{
int left,right;
}s[];
int main()
{
cin>>n;
for(int i = ;i < n;i ++)
{
cin.get();
cin>>l;
if(strcmp(l,"-") == )s[i].left = -;
else
{
int d = ;
for(int j = ;l[j];j ++)
d = d * + l[j] - '';
s[i].left = d;
v[d] = ;
}
cin.get();
cin>>r;
if(strcmp(r,"-") == )s[i].right = -;
else
{
int d = ;
for(int j = ;r[j];j ++)
d = d * + r[j] - '';
s[i].right = d;
v[d] = ;
}
}
for(int i = ;i < n;i ++)
if(!v[i])
{
root = i;
break;
}
q[tail ++] = root;
while(head < tail)
{
if(s[q[head]].left != -)q[tail ++] = s[q[head]].left;
else break;
if(s[q[head]].right != -)q[tail ++] = s[q[head]].right;
else break;
head ++;
}
if(tail == n)cout<<"YES "<<q[tail - ];
else cout<<"NO "<<root;
}

1110. Complete Binary Tree (25)的更多相关文章

  1. [二叉树建树&完全二叉树判断] 1110. Complete Binary Tree (25)

    1110. Complete Binary Tree (25) Given a tree, you are supposed to tell if it is a complete binary tr ...

  2. 1110 Complete Binary Tree (25 分)

    Given a tree, you are supposed to tell if it is a complete binary tree. Input Specification: Each in ...

  3. PAT Advanced 1110 Complete Binary Tree (25) [完全⼆叉树]

    题目 Given a tree, you are supposed to tell if it is a complete binary tree. Input Specification: Each ...

  4. PAT甲题题解-1110. Complete Binary Tree (25)-(判断是否为完全二叉树)

    题意:判断一个节点为n的二叉树是否为完全二叉树.Yes输出完全二叉树的最后一个节点,No输出根节点. 建树,然后分别将该树与节点树为n的二叉树相比较,统计对应的节点个数,如果为n,则为完全二叉树,否则 ...

  5. 【PAT甲级】1110 Complete Binary Tree (25分)

    题意: 输入一个正整数N(<=20),代表结点个数(0~N-1),接着输入N行每行包括每个结点的左右子结点,'-'表示无该子结点,输出是否是一颗完全二叉树,是的话输出最后一个子结点否则输出根节点 ...

  6. PAT (Advanced Level) 1110. Complete Binary Tree (25)

    判断一棵二叉树是否完全二叉树. #include<cstdio> #include<cstring> #include<cmath> #include<vec ...

  7. 1110 Complete Binary Tree

    1110 Complete Binary Tree (25)(25 分) Given a tree, you are supposed to tell if it is a complete bina ...

  8. PAT甲级——1110 Complete Binary Tree (完全二叉树)

    此文章同步发布在CSDN上:https://blog.csdn.net/weixin_44385565/article/details/90317830   1110 Complete Binary ...

  9. 1110 Complete Binary Tree (25 分)

    1110 Complete Binary Tree (25 分) Given a tree, you are supposed to tell if it is a complete binary t ...

随机推荐

  1. 【转】Linux rpm 安装卸载操作

    rpm 是红帽(RedHat)软件包管理工具,实现类似于 Windows 中的添加/删除程序功能.下面,就来向大家介绍 rpm 命令的用法. 1. 安装rpm包: rpm -ivh 软件包名 安装软件 ...

  2. iOS 什么是函数式编程

    前言:当前只做理解性的常规背书,根据不断深入学习会不断丰富解读内容,欢迎评论提意见 函数式编程:Functional Programming 1 基本解释: 函数式编程 是一种思维模式,一种编程思想, ...

  3. $Android自定义控件风格的方法

    EditText在获取焦点后默认的边框都是黄色的,这可能和我在开发的应用的主题颜色不匹配,那怎么办呢?——用自定义的控件风格,比如说我想让EditText在获取焦点时候边框变成蓝色的,而失去焦点后边框 ...

  4. gzframework开发记录

    修改窗体权限: 重写方法 修改操作按钮名称 全部自定义增加操作按钮: 插入控件顺序: InsertAfterButton插入到指定控件后面 InsertBeforeButton插入到指定控件前面 公共 ...

  5. Qt核心机制和原理

    转:http://blog.csdn.net/light_in_dark/article/details/64125085 ★了解Qt和C++的关系 ★掌握Qt的信号/槽机制的原理和使用方法 ★了解Q ...

  6. JSP笔记01——尝试

    JSP ————> servlet 我的第1个Java Web应用程序——index.jsp 我的第2个Java Web应用程序——welcome-file 我的第3个Java Web应用程序— ...

  7. P4121 [WC2005]双面棋盘

    题目 P4121 [WC2005]双面棋盘 貌似是刘汝佳出的题目?? 做法 线段树维护并查集 线段树分治\(1\)~\(n\)行,我们要考虑维护的肯定是黑.白各自的联通块数量 考虑区间合并,其实就与中 ...

  8. JZ2440专用dnw 支持xp、win7、win8和win10系统【转】

    本文转载自:https://blog.csdn.net/czg13548930186/article/details/76999152 学习于韦东山百问网公司 本文用于解决win7以上系统使用dnw难 ...

  9. Classloader机制

    1.概述? 类加载器:负责.class文件加载到内存中,并为之生成对应的Class对象,也就是字节码对象.这样就可以使用这个类中的成员变量和方法了.而被加载到内存中的class文件就会变成class对 ...

  10. NLP学习常用的网页链接

    [2016.7.5] 这是以前学习的时候整理的,放到博客里面,以后再有的话会更新~ 1.一个国外的学者维护的博客,介绍NLP [链接](http://nlpers.blogspot.jp/) 2.北京 ...