HDU1815 Building roads(二分+2-SAT)
Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.
That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.
We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.
Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.
Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.
Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.
Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.
The same pair of barns never appears more than once.
Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.
You should note that all the coordinates are in the range [-1000000, 1000000].
思路是没有问题的,但是写的有点丑,很多地方还可以合并。一开始思路就没有问题的,但是这种题就是找bug很头疼。QwQ!
结果是maxn开了510,忘记了两倍,晕死了。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=;
const int B=;
const int R=;
const int W=;
vector<int>G[maxn];
vector<int>G2[maxn];
int dis[][maxn],Dis;//Dis是S点,T点
int x,y,x1,y1,x2,y2,a,b,n,ans;
int col[maxn],q[maxn],num;
void init()
{
for(int i=;i<=*n;i++) G[i].clear();
for(int i=;i<=*n;i++) G2[i].clear();
ans=-;
}
void scan()
{
int i;
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
Dis=abs(x1-x2)+abs(y1-y2);
for(i=;i<=n;i++){
scanf("%d%d",&x,&y);
dis[][i]=abs(x-x1)+abs(y-y1);
dis[][i]=abs(x-x2)+abs(y-y2);
}
for(i=;i<=a;i++){
scanf("%d%d",&x,&y);
G[x].push_back(y+n);
G[x+n].push_back(y);
G[y].push_back(x+n);
G[y+n].push_back(x);
}
for(i=;i<=b;i++){
scanf("%d%d",&x,&y);
G[x].push_back(y);
G[y].push_back(x);
G[x+n].push_back(y+n);
G[y+n].push_back(x+n);
} }
bool dfs(int u)
{
if(col[u]==R) return false;
if(col[u]==B) return true;
col[u]=B;
col[u>n?u-n:u+n]=R;
q[++num]=u;
for(int i=;i<G[u].size();i++) if(!dfs(G[u][i])) return false;
for(int i=;i<G2[u].size();i++) if(!dfs(G2[u][i])) return false;
return true;
}
bool check(int x)
{
int i,j;
for(i=;i<=n;i++) if(dis[][i]>x&&dis[][i]>x) return false;
for(i=;i<=*n;i++) G2[i].clear();
for(i=;i<=*n;i++) col[i]=;
for(i=;i<=n;i++)
for(j=i+;j<=n;j++){
int d1=dis[][i]+dis[][j];
int d2=dis[][i]+dis[][j]+Dis;
int d3=dis[][i]+dis[][j];
int d4=dis[][i]+dis[][j]+Dis;
if(d1>x&&d2>x&&d3>x&&d4>x) return false;
if(d1>x){
G2[i].push_back(j+n);
G2[j].push_back(i+n);
}
if(d2>x){
G2[i].push_back(j);
G2[j+n].push_back(i+n);
}
if(d3>x){
G2[i+n].push_back(j);
G2[j+n].push_back(i);
}
if(d4>x){
G2[i+n].push_back(j+n);
G2[j].push_back(i);
}
}
for(i=;i<=*n;i++){
if(col[i]) continue;
num=;
if(!dfs(i)){
for(j=;j<=num;j++) {
col[q[j]>n?q[j]-n:q[j]+n]=W;
col[q[j]]=W;
}
if(!dfs(i>n?i-n:i+n)) return false;
}
}
return true;
}
int main()
{
while(~scanf("%d%d%d",&n,&a,&b)){
init();
int L=,R=;
scan();
while(L<=R){
int mid=(L+R)>>;
if(check(mid)){ ans=mid;R=mid-;}
else L=mid+;
}
printf("%d\n",ans);
}
return ;
}
下面这样建图有些问题,读者可以思考一下。
if(d2<=x&&d1>x&&d3>x){
G2[i].push_back(j+n);
G2[j+n].push_back(i);
}
if(d1<=x&&d2>x&&d4>x){
G2[i].push_back(j);
G2[j].push_back(i);
}
if(d4<=x&&d3>x&&d1>x){
G2[i+n].push_back(j);
G2[j].push_back(i+n);
}
if(d3<=x&&d4>x&&d2>x){
G2[i+n].push_back(j+n);
G2[j+n].push_back(i+n);
}
HDU1815 Building roads(二分+2-SAT)的更多相关文章
- POJ Building roads [二分答案 2SAT]
睡觉啦 #include <iostream> #include <cstdio> #include <cstring> #include <algorith ...
- poj 2749 Building roads (二分+拆点+2-sat)
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6229 Accepted: 2093 De ...
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- Building roads
Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- [POJ2749]Building roads(2-SAT)
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8153 Accepted: 2772 De ...
- poj 3625 Building Roads
题目连接 http://poj.org/problem?id=3625 Building Roads Description Farmer John had just acquired several ...
- BZOJ 1626: [Usaco2007 Dec]Building Roads 修建道路( MST )
计算距离时平方爆了int结果就WA了一次...... ------------------------------------------------------------------------- ...
- bzoj1626 / P2872 [USACO07DEC]道路建设Building Roads
P2872 [USACO07DEC]道路建设Building Roads kruskal求最小生成树. #include<iostream> #include<cstdio> ...
- bzoj 1626: [Usaco2007 Dec]Building Roads 修建道路 -- 最小生成树
1626: [Usaco2007 Dec]Building Roads 修建道路 Time Limit: 5 Sec Memory Limit: 64 MB Description Farmer J ...
随机推荐
- Django基础(一)_URLconf、Views、template、ORM
一 什么是web框架? 框架,即framework,特指为解决一个开放性问题而设计的具有一定约束性的支撑结构,使用框架可以帮你快速开发特定的系统,简单地说,就是你用别人搭建好的舞台来做表演. 对于所有 ...
- LeetCode_Easy_471:Number Complement
LeetCode_Easy_471:Number Complement 题目描述 Given a positive integer, output its complement number. The ...
- python之路 内置函数,装饰器
一.内置函数 #绝对值 abs() #所有值都为真才为真 all() #只要有一个值为真就为真 any() #10进制转成二进制 bin() #10进制转成八进制 oct() #10进制转成十六进制 ...
- Shell 语句
一 test 测试: 测试命令 test [ ] [[ ]] (( ))打开man test 逐一介绍每个参数 浮点计算:echo 'scale=2;1/3'|bc -l 测试操作命令执行后会返回到 ...
- R中的数据重塑函数
1.去除重复数据 函数:duplicated(x, incomparables = FALSE, MARGIN = 1,fromLast = FALSE, ...),返回一个布尔值向量,重复数据的第一 ...
- volatile笔记
总结自:https://www.cnblogs.com/dolphin0520/p/3920373.html 了解volatile之前得明白什么是原子性.可见性.有序性及指令重排序,详见:https: ...
- Python内置标准模块
time 模块 1 >>> import time 2 >>> time.time() 3 1491064723.808669 4 >>> # t ...
- IDEA中集成JRebel插件
下载下面2个插件 jr-ide-intellij-6.4.3_13-16.zip --- 官网的jar(地址:https://plugins.jetbrains.com/plugin/4441-jre ...
- mysql基础(4)-数据导入
如何把数据导入(出)mysql 导出 sql语句 select * from 表名 into outfile "详细路径" fields terminated by ...
- sshfs的挂载与卸载
在CentOS中 sshfs的使用依赖EPEL(只安装sshfs不会出错,但是却无法使用) 挂载 安装EPEL rpm -i https://dl.fedoraproject.org/pub/epel ...