学习适应结构化输出空间进行语义分割

在语义分割场景中,虽然物体在外表上不同,但是他们的输出是结构化且共享很多例如空间分布,

局部内容等信息。所以作者提出了multi-level的输出空间adaptation。

本文提出一种在未知领域强化source领域知识的finetune,作者观察到分割效果不好的痛点

(例如源领域是天气好的图片,目标领域是下雨天气,预测下雨天气分割时,对于车子这些原有领域

已知的目标,我们要强化它的分割效果)。

作者主要做了两组实验,在虚拟数据集如GTA5等训练,然后在真实数据测试。在一个城市的数据

训练,然后在另一个城市测试。

Overview of the Proposed Model

算法主要流程:

为了解决分割网络在一个领域往另一个领域迁移,首先在source数据集训练一个backbone。然后对于source和target数据集抽样,通过对样本的feature map做输入,训练一个判别网络来判断target图有哪些知识是来源于source。然后用判别器得到的LadvLseg同时对网络进行finetune。

Network Architecture and Training

Discriminator

判别器由{64, 128, 256, 512, 1}x4x4, stride=2的卷积层组合而成,除了最后一层都用0.2的leaky ReLU激活。最后一层加入upsample恢复大小,不使用BN。

Segmentation Network

在deeplab-v2上做改动,改部分层的stride、加入ASPP,实验说在Cityspaces上有65.1% mIoU。

NetworkTraining

输入源图片得到分割输出Ps,求Lseg训练分割网络。然后对于目标输入,得到分割输出后Pt,和Ps一起优化Ld。另外还要优化对抗损失Ladv

Objective Function for Domain Adaptation

总损失函数为,i 是multi-level的不同卷积层特征图进行处理得到的结果,分为前后两部分交叉熵。

第一部分是分割效果的交叉熵:,第二部分则是,在部分的设计在于最大化特征图target中属于source的像素点,目的在于让网络识别哪些是之前source领域有的知识。

至于怎么训练网络判断,,z=0表示点输入目标领域,不在我们知道的知识范围内。训练则通过在两个领域分别采样即可。

优化目标,在最小化source image的分割损失的情况下,最大化目标预测值被认为是源预测值的可能,即最大化运用会原先的知识。

Experimental Results

[CVPR2018]Learning to Adapt Structured Output Space for Semantic Segmentation的更多相关文章

  1. 论文笔记之: Deep Metric Learning via Lifted Structured Feature Embedding

    Deep Metric Learning via Lifted Structured Feature Embedding CVPR 2016 摘要:本文提出一种距离度量的方法,充分的发挥 traini ...

  2. 论文笔记: Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation

    Mutual Learning to Adapt for Joint Human Parsing and Pose Estimation 2018-11-03 09:58:58 Paper: http ...

  3. Struck: Structured Output Tracking with Kernels

    reference: Struck: Structured Output Tracking with Kernels hot topic: tracking-by-detection methods, ...

  4. 论文笔记:A Review on Deep Learning Techniques Applied to Semantic Segmentation

    A Review on Deep Learning Techniques Applied to Semantic Segmentation 2018-02-22  10:38:12   1. Intr ...

  5. Review of Semantic Segmentation with Deep Learning

    In this post, I review the literature on semantic segmentation. Most research on semantic segmentati ...

  6. Semantic Segmentation on Remotely Sensed Images Using an Enhanced Global Convolutional Network with Channel Attention and Domain Specific Transfer Learning

    创新点: 1.在GCN(global convolutional network)基础上,把他的backbone替换成更多层的,使其适应中分辨率影像,resnet50,101,152 2.利用 cha ...

  7. 论文笔记:(CVPR2017)PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

    目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet ...

  8. Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Self-Supervised Contrastive Learning Method

    论文阅读: Remote Sensing Images Semantic Segmentation with General Remote Sensing Vision Model via a Sel ...

  9. [论文][半监督语义分割]Adversarial Learning for Semi-Supervised Semantic Segmentation

    Adversarial Learning for Semi-Supervised Semantic Segmentation 论文原文 摘要 创新点:我们提出了一种使用对抗网络进行半监督语义分割的方法 ...

随机推荐

  1. 使用java多线程分批处理数据工具类

    最近由于业务需要,数据量比较大,需要使用多线程来分批处理,提高处理效率和能力,于是就写了一个通用的多线程处理工具,只需要实现自己的业务逻辑就可以正常使用,现在记录一下 主要是针对大数据量list,将l ...

  2. VS2017发布微服务到docker

    1.本文档以eShopOnContainers.sevices.identity为描述对象,并包含docker for windows的部分配置流程. 2.前置环境:win10操作系统.安装VS201 ...

  3. Git中从远程的分支获取最新的版本到本地——两种命令

    Git中从远程的分支获取最新的版本到本地有这样2个命令: 1. git fetch:相当于是从远程获取最新版本到本地,不会自动merge Git fetch origin master git log ...

  4. windows 系统禁止使用 U 盘的方法

    windows 系统禁止使用 U 盘的方法 最简单的办法: 注册表 [HKEY_LOCAL_MACHINE\SYSTEM\CurrentCntrolSet\Services\USBSTOR] 将名为 ...

  5. ORB-SLAM (四)tracking单目初始化

    单目初始化以及通过三角化恢复出地图点 单目的初始化有专门的初始化器,只有连续的两帧特征点均>100个才能够成功构建初始化器. ); 若成功获取满足特征点匹配条件的连续两帧,并行计算分解基础矩阵和 ...

  6. linux命令大全(转载)

    在搭建openstack时遇到问题,导致上网查询相关信息.找到一篇不错的文章,希望对大家有用.下附地址: http://blog.csdn.net/junbujianwpl/article/detai ...

  7. Wireshark lua dissector 对TCP消息包合并分析

    应用程序发送的数据报都是流式的,IP不保证同一个一个应用数据包会被抓包后在同一个IP数据包中,因此对于使用自制dissector的时候需要考虑这种情况. Lua Dissector相关资料可以见:ht ...

  8. 在阿里云上遇见更好的Oracle(四)

    2016.5.13,北京,第七届数据库技术大会. 从最初的itpub社区,到后来被it168收购,DBA社区的线下聚会发展成2010年第一届数据库技术大会(DTCC).第一届大会汇聚了社区内活跃的各位 ...

  9. 企业级Tomcat部署配置

    1.1 Tomcat简介 Tomcat是Apache软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun和其他一些公司及个人 ...

  10. C++中的默认参数规则

    C++中的默认参数规则 C++的默认参数规则其实是一个非常容易掉坑的规则,尤其是当一个函数拥有多个声明的时候,每个声明的默认参数可以各不相同,在调用时又可能与每个声明都不同:这篇博客稍微列举一下C++ ...