Bob is attending a chess competition. Now the competition is in the knockout phase. There are 2^r2r players now, and they will play over rr rounds.

In each knockout round, the remaining players would be divided into pairs, and the winner of each pair would advance to the next knockout round. Finally only one player would remain and be declared the champion.

Bob has already assigned all players in an order while he assigned himself to the k-th site. A better player is located at a site with a smaller number indicating a higher order. The probability that a player with higher order wins a player with lower order is p (0 \le p \le 1)p(0≤p≤1).

Bob notices that arrangement of matches is crucial for the final result.

For example, if there are 44 players and Bob is the second best player (he is the second site), and p = 0.9p=0.9. In the first round, if Bob meets the best player, he will have only 0.1 \times 0.9 = 0.090.1×0.9=0.09 probability to become the champion. However if he does not meet the best player in the first round, he will have 0.9 \times (0.9 \times 0.1 + 0.1 \times 0.9) = 0.1620.9×(0.9×0.1+0.1×0.9)=0.162 probability to become the champion. Now Bob wants to know, what is the winning probability for him in the best arrangement of matches.

Input

The first line in the input contains an integer t (1 \le t \le 63000)t(1≤t≤63000) which is the number of test cases.

For each case, there is only one line containing two integers rr and kk (1 \le r < 64,1 \le k \le 2^r)(1≤r<64,1≤k≤2r) and a float-point number p (0 \le p \le 1)p(0≤p≤1) as described above.

Output

For each case, calculate the winning probability for Bob in the best arrangement. Output the probability with the precision of 66 digits.

样例输入

2
1 1 0.8
2 2 0.9

样例输出

0.800000
0.162000 题意:2^r个人打比赛,一共比r伦决出冠军,主角的实力排在第k位,并且对于所有人,打败比他弱的人概率是p,打败比他强的人概率是(1-p);主角要尽可能的提高获胜的概率,求这个概率即可
思路:如果当前这一轮还有比主角弱的人,主角选择和弱的人对决,若只剩比主角强的人,就只能和强的人比赛。dfs记得记忆化搜索。。
AC代码:
#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<algorithm>
#include<cmath>
#include<vector>
#include<cstring>
#include<map>
using namespace std;
#define INF 0x3f3f3f3f
#define EPS 1e-7
typedef unsigned long long ll;
const int N_MAX = +;
const int MOD = 1e10+;
int r;
ll k, qiang, ruo, num;
map<pair<ll, ll>, double>mp;//记忆化搜素
double p; double dfs(ll qiang,ll ruo) {
if (qiang == && ruo == )return ;
if (mp[make_pair(qiang, ruo)] != )return mp[make_pair(qiang, ruo)];
ll nxt_qiang = qiang >> , nxt_ruo = ruo >> ;
if (ruo & ) {//弱的为奇数个,说明强的为偶数个,只要主角和一个弱的打就行了
return mp[make_pair(qiang, ruo)] =p*dfs(nxt_qiang, nxt_ruo);
}
else {//否则弱的是偶数个,强的奇数个
if (ruo != ) {//弱的个数不为0,此时主角还是选择和弱的打,但是总会有一个强的会多出来和弱的打,所以这两者谁赢谁输就要分两种情况
return mp[make_pair(qiang, ruo)] = p*(p*dfs(nxt_qiang + , nxt_ruo - ) + ( - p)*dfs(nxt_qiang, nxt_ruo));
}
else {//没有弱的选手了,主角只能和强的打
return mp[make_pair(qiang, )] = ( - p)*dfs(nxt_qiang, );
}
}
} int main() {
int t; scanf("%d",&t);
while (t--) {
scanf("%d%lld%lf",&r,&k,&p);
mp.clear();
num = 1LL << r;
qiang = k - , ruo = num - k;
double res=dfs(qiang, ruo);
printf("%.6f\n",res);
}
return ;
}

2017南宁现场赛E The Champion的更多相关文章

  1. 2017acm南宁现场赛 J题 Rearrangement

    题意: 给定一个2 * n的矩阵, 和 2 * n 个数, 问能不能通过重排列, 使得任意相邻两数不能被3整除 分析: 这题一直卡到最后, 赛后经对面大佬提醒后, 发现统计所有数模三的结果(0,1,2 ...

  2. 2017 青岛现场赛 Suffix

    Consider n given non-empty strings denoted by s1 , s2 , · · · , sn . Now for each of them, you need ...

  3. 2017 青岛现场赛 I The Squared Mosquito Coil

    Lusrica designs a mosquito coil in a board with n × n grids. The mosquito coil is a series of consec ...

  4. 2017南宁网络赛 Problem J Minimum Distance in a Star Graph ( 模拟 )

    题意 : 乱七八糟说了一大堆,实际上就是问你从一个序列到另个序列最少经过多少步的变化,每一次变化只能取序列的任意一个元素去和首元素互换 分析 : 由于只能和第一个元素去互换这种操作,所以没啥最优的特别 ...

  5. ACM-ICPC 2017 西安赛区现场赛 K. LOVER II && LibreOJ#6062. 「2017 山东一轮集训 Day2」Pair(线段树)

    题目链接:西安:https://nanti.jisuanke.com/t/20759   (计蒜客的数据应该有误,题目和 LOJ 的大同小异,题解以 LOJ 为准)     LOJ:https://l ...

  6. 2017 ICPC区域赛(西安站)--- J题 LOL(DP)

    题目链接 problem description 5 friends play LOL together . Every one should BAN one character and PICK o ...

  7. 2013ACM/ICPC亚洲区南京站现场赛---Poor Warehouse Keeper(贪心)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4803 Problem Description Jenny is a warehouse keeper. ...

  8. HDU 5920 Ugly Problem 高精度减法大模拟 ---2016CCPC长春区域现场赛

    题目链接 题意:给定一个很大的数,把他们分为数个回文数的和,分的个数不超过50个,输出个数并输出每个数,special judge. 题解:现场赛的时候很快想出来了思路,把这个数从中间分为两部分,当位 ...

  9. 2013杭州现场赛B题-Rabbit Kingdom

    杭州现场赛的题.BFS+DFS #include <iostream> #include<cstdio> #include<cstring> #define inf ...

随机推荐

  1. 北京Uber优步司机奖励政策(3月25日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. c/c++指针传参

    首先要理解参数传递,参数传递分值传递,指针传递,引用传递.(就我自己理解,就是把实参对形参进行赋值) 值传递: 形参是实参的拷贝,改变形参的值并不会影响外部实参的值.从被调用函数的角度来说,值传递是单 ...

  3. c/c++容器操作

    C++中的容器大致可以分为两个大类:顺序容器和关联容器.顺序容器中包含有顺序容器适配器. 顺序容器:将单一类型元素聚集起来成为容器,然后根据位置来存储和访问这些元素.主要有vector.list.de ...

  4. P1189 SEARCH(逃跑的拉尔夫)

    P1189 SEARCH 题目描述 年轻的拉尔夫开玩笑地从一个小镇上偷走了一辆车,但他没想到的是那辆车属于警察局,并且车上装有用于发射车子移动路线的装置. 那个装置太旧了,以至于只能发射关于那辆车的移 ...

  5. LeetCode:9. Palindromic Number(Medium)

    原题链接:https://leetcode.com/problems/palindrome-number/description/ 1. 题目要求:判断一个int类型整数是否是回文,空间复杂度O(1) ...

  6. android去掉button默认的点击阴影

    查了资料,发现别人都是说加一个style属性. style="?android:attr/borderlessButtonStyle" 加上了确实管用,但是我绝不是不求甚解的人.追 ...

  7. OpenCV入门:(四:混合两张图片)

    1. 原理 对两张图片使用如下公式可以得到两张图片的混合图片, 其中f0(x),f1(x)分别是图片1和图片2同一位置的像素点. 2. OpenCV中的AddWeight函数 函数和参数说明: ) s ...

  8. BZOJ 2946 POI2000 公共串 后缀自动机(多串最长公共子串)

    题意概述:给出N个字符串,每个串的长度<=2000(雾...可能是当年的年代太久远机子太差了),问这N个字符串的最长公共子串长度为多少.(N<=5) 抛开数据结构,先想想朴素做法. 设计一 ...

  9. HDU 3698 Let the light guide us(DP+线段树)(2010 Asia Fuzhou Regional Contest)

    Description Plain of despair was once an ancient battlefield where those brave spirits had rested in ...

  10. 并查集——poj1611(入门)

    传送门:The Suspects 并查集水题 #include <iostream> #include <cstdio> #include <algorithm> ...