459. Repeated Substring Pattern【easy】

Given a non-empty string check if it can be constructed by taking a substring of it and appending multiple copies of the substring together. You may assume the given string consists of lowercase English letters only and its length will not exceed 10000.

Example 1:

Input: "abab"

Output: True

Explanation: It's the substring "ab" twice.

Example 2:

Input: "aba"

Output: False

Example 3:

Input: "abcabcabcabc"

Output: True

Explanation: It's the substring "abc" four times. (And the substring "abcabc" twice.)

一开始理解为只有abcabc这种情况了,搞了一个错误代码

 class Solution {
public:
bool repeatedSubstringPattern(string s) {
int len = s.size();
if (len % ) {
return false;
} return s.substr(, len / ) == s.substr(len / );
}
};

但题意是说: constructed by taking a substring of it and appending multiple copies of the substring together,如果按上面错误解法,abcabc这种字符串是可以判断正确的,但是对于abcdabcdabcd这种字符串就无能为力了。

解法一:

 class Solution {
public:
bool repeatedSubstringPattern(string str) {
string nextStr = str;
int len = str.length();
if(len < ) return false;
for(int i = ; i <= len / ; i++){
if(len % i == ){
nextStr = leftShift(str, i);
if(nextStr == str) return true;
}
}
return false;
} string leftShift(string &str, int l){
string ret = str.substr(l);
ret += str.substr(, l);
return ret;
}
};

参考了@shell32的解法。

对于每个小长度进行判断,可以被整个长度整除,说明该小长度有可能成为备选;下面就是如何通过这个备选来看是否可以由多个备选组成整个字符串了。这个解法我们就是用到了左移再合并字符串的方法。

解法二:

 bool repeatedSubstringPattern(string str) {
int n = str.length();
for (int i = ; i <= n / ; i++)
if (n % i == && str.substr(i) == str.substr(, n - i))
return true;
return false;
}

参考了@StefanPochmann的解法。

解法一中判断:“如何通过这个备选来看是否可以由多个备选组成整个字符串了”的方法,解法二直接采用字符串区间的方法来判断。

解法三:

 bool repeatedSubstringPattern(string str)
{
return (str + str).substr(, str.size() * - ).find(str)!=-;
}

这是一个大神解法,参考了@ Xianming.Chen的解法。

他的思路如下:

str + str means doubling, (str + str).substr(1, str.size() * 2 - 2) means removing the first char of the first half and the last char of the second half.

  1. If there is no pattern, both of the first copy and the second copy will be changed, so str will not be found in (str + str).substr(1, str.size() * 2 - 2).
  2. If there is a pattern, the first char of str can still be found in the first half, and the last char of str can also be found in the second half. Here is an example: abcabc is the original string, and (bcabc abcab) includes abcabc.

对于上面的情况1,例子如下:

abaabc

baabcabaab

可以发现,根本找不到

对于上面的情况2,例子如下:

abcabc

bcabcabcab

可以发现,能找到

另外补充一下,C++ string截取字符串的函数:

s.substr(pos, n):截取s中从pos开始(包括0)的n个字符的子串,并返回

s.substr(pos):截取s中从从pos开始(包括0)到末尾的所有字符的子串,并返回

459. Repeated Substring Pattern【easy】的更多相关文章

  1. 43. leetcode 459. Repeated Substring Pattern

    459. Repeated Substring Pattern Given a non-empty string check if it can be constructed by taking a ...

  2. *459. Repeated Substring Pattern (O(n^2)) two pointers could be better?

    Given a non-empty string check if it can be constructed by taking a substring of it and appending mu ...

  3. 459. Repeated Substring Pattern

    https://leetcode.com/problems/repeated-substring-pattern/#/description Given a non-empty string chec ...

  4. 【LeetCode】459. Repeated Substring Pattern 解题报告(Java & Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 遍历子串 日期 [LeetCode] 题目地址:ht ...

  5. 【LeetCode】459. Repeated Substring Pattern

    Given a non-empty string check if it can be constructed by taking a substring of it and appending mu ...

  6. [LeetCode] 459. Repeated Substring Pattern 重复子字符串模式

    Given a non-empty string check if it can be constructed by taking a substring of it and appending mu ...

  7. LeetCode 459 Repeated Substring Pattern

    Problem: Given a non-empty string check if it can be constructed by taking a substring of it and app ...

  8. KMP - LeetCode #459 Repeated Substring Pattern

    复习一下KMP算法 KMP的主要思想是利用字符串自身的前缀后缀的对称性,来构建next数组,从而实现用接近O(N)的时间复杂度完成字符串的匹配 对于一个字符串str,next[j] = k 表示满足s ...

  9. LeetCode - 459. Repeated Substring Pattern - O(n)和O(n^2)两种思路 - KMP - (C++) - 解题报告

    题目 题目链接 Given a non-empty string check if it can be constructed by taking a substring of it and appe ...

随机推荐

  1. 【分块】bzoj1858 [Scoi2010]序列操作

    分块 Or 线段树 分块的登峰造极之题 每块维护8个值: 包括左端点在内的最长1段: 包括右端点在内的最长1段: 该块内的最长1段: 该块内1的个数: 包括左端点在内的最长0段://这四个是因为可能有 ...

  2. 【分块答案】【最小生成树】【kruscal】bzoj1196 [HNOI2006]公路修建问题

    二分(分块)枚举 边权上限.用kruscal判可行性. #include<cstdio> #include<algorithm> #include<cstring> ...

  3. 【网络流】【Dinic】【最大流】bzoj3396 [Usaco2009 Jan]Total flow 水流

    #include<cstdio> #include<cstring> #include<algorithm> #include<queue> using ...

  4. 【最短路】【spfa】CODEVS 2645 Spore

    spfa最短路+判负权回路(是否某个点入队超过n次). #include<cstdio> #include<queue> #include<cstring> usi ...

  5. [CF877F]Ann and Books

    题目大意: 有$n(n\le10^5)$个数$w_{1\sim n}(|w_i|\le10^9)$,并给定一个数$k(|k|\le10^9)$.$q(q\le10^5)$次询问,每次询问区间$[l,r ...

  6. Delphi 通过SQLite3, SQLiteTable3 操作数据库

    var sql, sFile:string; db:TSQLiteDatabase;begin try sFile := G_AppPath + CH_IPC712Db; //if FileExist ...

  7. OpenStack手动制作CentOS 7 KVM镜像

    在前面讲解KVM的时候,我们已经学习了如何制作KVM镜像,那么制作OpenStack使用的镜像和KVM是有一些区别的. 1.    下载CentOS 7官方ISO安装镜像这里使用国内阿里云的镜像源进行 ...

  8. volatile型变量自增操作的隐患

      用FindBugs跑自己的项目,报出两处An increment to a volatile field isn't atomic.对应报错的代码例如以下: volatile int num = ...

  9. 【机器学习 & 数据挖掘 通俗介绍】

    如何向小白介绍何谓机器学习和数据挖掘?买回芒果他就懂了 JasonZheng • 2013-01-07 22:18   买芒果 嘴馋的你想吃芒果了,于是你走到水果摊,挑了几个让老板过过秤,然后你再根据 ...

  10. MAC 使用技巧及常用软件备忘

    公司转向MAC快一年, 换了MAC PRO半年时间,MAC这东西除了颜值和性能,软件真是不如WINDOWS啊,不是没有,只是好多都收费! 先介绍几个跨平台的. WIN+MAC 通用: 浏览器: CHR ...