此题是 2018 年 ICPC Asia Beijing Regional Contest 的 C 题。

题目大意

求斜边长度不超过 $n$($ n \le 10^9$) 的勾股数的数量。不计两直角边的顺序,即勾股数 $(a, b, c)$ 和 $(b, a, c)$ 视作同一组。

分析

这是一道颇为经典的计数问题。

请先阅读维基百科上的 Pythagorean triple 条目。

设斜边为 $n$ 的勾股数有 $f(n)$ 个。又设斜边为 $n$ 的本原勾股数有 $g(n)$ 个。于是有

$ f(n) = \sum_{d \mid n} g(d)$ 。

令 $F$ 为 $f$ 的前缀和,令 $G$ 为 $g$ 的前缀和。有

\begin{aligned}

F(n) &= \sum_{i = 1}^{n} f(n) \\

&= \sum_{i = 1}^{n} \sum_{d \mid i} g(d) \\

&= \sum_{i = 1}^{n} G(\floor{n / i})

\end{aligned}

根据 $G$ 的定义,有

\begin{aligned}

G(n) &= \sum_{i = 1}^{n} g(i) \\

&=\sum_{\substack{1 \le x \le n \\ x \text{ is odd} } } \sum_{\substack{1 \le y \le n \\ y \text{ is even}}} [x^2 + y^2 \le n] [\gcd(x, y) = 1] \\

&= \frac{1}{2} \left(\sum_{1 \le x \le n } \sum_{1 \le y \le n } - \sum_{\substack{1 \le x \le n \\ x \text{ is odd}} } \sum_{\substack{1 \le y \le n \\ y \text{ is odd}} } \right) [x^2 + y^2 \le n] [\gcd(x, y) = 1]

\end{aligned}

\begin{aligned}

& \left(\sum_{1 \le x \le n } \sum_{1 \le y \le n } - \sum_{\substack{1 \le x \le n \\ x \text{ is odd}} } \sum_{\substack{1 \le y \le n \\ y \text{ is odd}} } \right) [x^2 + y^2 \le n] [\gcd(x, y) = 1] \\

&= \left(\sum_{1 \le x \le n } \sum_{1 \le y \le n } - \sum_{\substack{1 \le x \le n \\ x \text{ is odd}} } \sum_{\substack{1 \le y \le n \\ y \text{ is odd}} } \right) [x^2 + y^2 \le n] \sum_{d \mid \gcd(x, y)} \mu(d) \\

&= \sum_{1\le d \le \sqrt{n/2}} \mu(d) \left(\sum_{1 \le x \le n } \sum_{1 \le y \le n } - \sum_{\substack{1 \le x \le n \\ x \text{ is odd}} } \sum_{\substack{1 \le y \le n \\ y \text{ is odd}} } \right) [x^2 + y^2 \le n] [d \mid x] [d \mid y] \\

&= \sum_{1\le d \le \sqrt{n/2}} \mu(d) \left(\sum_{ 1 \le i \le n/d } \sum_{1 \le y \le n } - \sum_{\substack{1 \le i \le n/d \\ di \text{ is odd}} } \sum_{\substack{1 \le y \le n \\ y \text{ is odd}} } \right) [(id)^2 + y^2 \le n] [d \mid y] \\

&= \sum_{1\le d \le \sqrt{n/2}} \mu(d) \left(\sum_{ 1 \le i \le \sqrt{n}/d } \sum_{1 \le j \le \sqrt{n-(id)^2}/d } - \sum_{\substack{1 \le i \le \sqrt{n}/d \\ di \text{ is odd}} } \sum_{\substack{1 \le j \le \sqrt{n-(id)^2}/d \\ dj \text{ is odd}} } \right) 1 \\

&= \sum_{1\le d \le \sqrt{n/2}} \mu(d) \left(\sum_{ 1 \le i \le \sqrt{n}/d } \floor{ \frac{\sqrt{n-(id)^2}}{d} } - [d \text{ is odd}] \sum_{\substack{1 \le i \le \sqrt{n}/d \\ i \text{ is odd}} } \sum_{\substack{1 \le j \le \sqrt{n-(id)^2}/d \\ j \text{ is odd}} } 1 \right) \\

&= \sum_{1\le d \le \sqrt{n/2}} \mu(d) \left(\sum_{ 1 \le i \le \sqrt{n}/d } \floor{ \frac{\sqrt{n-(id)^2}}{d} } - [d \text{ is odd}] \sum_{\substack{1 \le i \le \sqrt{n}/d \\ i \text{ is odd}} } \floor{\frac{\frac{\sqrt{n-(id)^2}}{d} + 1}{2}} \right)

\end{aligned}

TODO:复杂度分析。

Implementation

预处理 $G$ 的前 2000 万项。

注意:代码不完整。

int main() {
FAST_READ
cout << fixed << setprecision(1);
#ifdef LOCAL
ifstream in("main.in");
cin.rdbuf(in.rdbuf());
#endif const int nax = 1e9 + 1;
// println(nax);
const int pre_n = 2e7;
vl pre_G(pre_n + 1); // pre-calculate some items of G
const int max_v = sqrt(pre_n); stp(i, 1, max_v + 1, 2) {
const int i2 = i * i;
const int max_j = sqrt(pre_n - i2);
stp (j, 2, max_j + 1, 2) {
if (__gcd(i, j) == 1) {
pre_G[i2 + j * j]++;
}
}
} rng (i, 1, pre_n + 1) {
pre_G[i] += pre_G[i - 1];
} const int max_d = sqrt(nax/2); const auto mu = get_mu(max_d); auto G = [&mu, &pre_G, pre_n](int n) { // # of primitive Pythagorean triples with c <= n
if (n <= pre_n) return pre_G[n];
ll ans = 0;
const int max_gcd = sqrt(n / 2);
const int tmp = (int)sqrt(n);
rng (d, 1, max_gcd + 1) {
ll sum = 0;
const int max_i = tmp / d;
for (int i = 1; i <= max_i; ) {
const int arg = int(sqrt(n - sq(i*d))) / d;
const int j = int(sqrt(n - sq(arg * d))) / d;
sum += (j - i + 1) * arg;
if (d & 1) {
sum -= (j - i + 1 + (i & 1)) / 2 * ((arg + 1) / 2);
}
i = j + 1;
}
ans += sum * mu[d];
}
return ans / 2;
}; auto F = [&](int n) { // # of Pythagorean triples with c <= n
ll ans = 0;
for (int i = 1; i <= n; ) {
int arg = n / i;
int j = n / arg;
ans += 1LL * (j - i + 1) * G(arg);
i = j + 1;
}
return ans;
}; int T; scan(T); rep (T) {
int n; scan(n);
println(F(n));
} #ifdef LOCAL
cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n";
#endif
return 0;
}

hihoCoder #1872 : Pythagorean triple的更多相关文章

  1. Codeforces Round #368 (Div. 2) C. Pythagorean Triples(数学)

    Pythagorean Triples 题目链接: http://codeforces.com/contest/707/problem/C Description Katya studies in a ...

  2. Pythagorean Triples

    Pythagorean Triples time limit per test 1 second memory limit per test 256 megabytes input standard ...

  3. codeforces-707 C. Pythagorean Triples

    C. Pythagorean Triples time limit per test 1 second memory limit per test 256 megabytes input standa ...

  4. Pythagorean Triples 707C

    Katya studies in a fifth grade. Recently her class studied right triangles and the Pythagorean theor ...

  5. Codeforces Round #368 (Div. 2) C. Pythagorean Triples 数学

    C. Pythagorean Triples 题目连接: http://www.codeforces.com/contest/707/problem/C Description Katya studi ...

  6. Pythagorean Triples毕达哥斯拉三角(数学思维+构造)

    Description Katya studies in a fifth grade. Recently her class studied right triangles and the Pytha ...

  7. codeforces707C:Pythagorean Triples

    Description Katya studies in a fifth grade. Recently her class studied right triangles and the Pytha ...

  8. codeforces 707C C. Pythagorean Triples(数学)

    题目链接: C. Pythagorean Triples time limit per test 1 second memory limit per test 256 megabytes input ...

  9. Codeforces Round #368 (Div. 2) C

    Description Katya studies in a fifth grade. Recently her class studied right triangles and the Pytha ...

随机推荐

  1. vue过渡动画效果

    1 过渡基础 1.1 过渡的方式 Vue 在插入.更新或者移除 DOM 时,提供多种不同方式的应用过渡效果. 包括以下工具: 在 CSS 过渡和动画中自动应用 class 可以配合使用第三方 CSS ...

  2. C调用约定__cdecl、__stdcall、__fastcall、__pascal分析

    参考原文地址:https://www.cnblogs.com/yenyuloong/p/9626658.html C/C++ 中不同的函数调用规则会生成不同的机器代码,产生不同的微观效果,接下来让我们 ...

  3. 【ospf-stub区域配置】

    根据项目需求搭建好如下拓扑图 配置rt1的环回口地址及g0/0/0和g0/0/1的ip地址 配rt1的ospf 配置rt2的环回口地址和g0/0/0和g0/0/1 配置rt2的ospf 配置rt3的环 ...

  4. 一张表搞清楚 php 的 is_null、empty、isset的区别

    isset 判断变量是否已存在 empty 判断变量是否为空或为0 is_null 判断变量是否为NULL 变量 empty is_null isset $a=”” true false true $ ...

  5. nodeJs 对 Mysql 数据库的 curd

    var mysql = require('mysql'); var connection = mysql.createConnection({ host : 'localhost', user : ' ...

  6. PLC编码规范

    PC在编码规范方面比PLC要好很多.既然它们都是编程语言,那么PC方面的规范是否可以用与PLC呢?答案是肯定的,但需要作取舍.下面规范中的大部分可以用于一般PLC,其中有些只是针对西门子博途,使用时需 ...

  7. python学习之路2(程序的控制结构)

    1.程序的分支结构 1.1 单分支 if <条件>:                       例:guess = eval(input()) <语句块>          ...

  8. Spring BindingResult验证框架Validation特殊用法

    使用注解@Valid(实体属性校验) Springboot实现 Spring实现 一.准备校验时使用的JAR validation-api-1.0.0.GA.jar:JDK的接口: hibernate ...

  9. Yarn 调度器Scheduler详解

    理想情况下,我们应用对Yarn资源的请求应该立刻得到满足,但现实情况资源往往是有限的,特别是在一个很繁忙的集群,一个应用资源的请求经常需要等待一段时间才能的到相应的资源.在Yarn中,负责给应用分配资 ...

  10. mono webreques https exception

    前几天在做一个使用URL通过WebRequest请求HTML页面的功能的时候遇到了点坑,程序在开发环境没有任何的问题,部署到linux mono上之后就跪了.代码如下: public static s ...