【bzoj2705】[SDOI2012]Longge的问题 欧拉函数
题目描述
输入
输出
样例输入
6
样例输出
15
题解
欧拉函数
易得知满足gcd(n,x)==i的小于等于n的x的个数为phi(n/i),
并且欧拉函数可以在O(√n)的时间内快速求出。。
于是可以先求出所有n的因子,再用欧拉函数得出答案。
由于因子是成对出现的,所以因子并不需要枚举到n,只需枚举到√n。如果i是n的因子,那么n/i也是n的因子,注意此时i*i==n不能算进答案内。
#include <cstdio>
typedef long long ll;
ll phi(ll x)
{
ll ans = x , t = x , i;
for(i = 2 ; i * i <= x ; i ++ )
{
if(t % i == 0) ans = ans * (i - 1) / i;
while(t % i == 0) t /= i;
}
if(t > 1) ans = ans * (t - 1) / t;
return ans;
}
int main()
{
ll n , i , ans = 0;
scanf("%lld" , &n);
for(i = 1 ; i * i <= n ; i ++ )
{
if(n % i == 0)
{
ans += i * phi(n / i);
if(i * i < n) ans += (n / i) * phi(i);
}
}
printf("%lld\n" , ans);
return 0;
}
【bzoj2705】[SDOI2012]Longge的问题 欧拉函数的更多相关文章
- BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- [SDOI2012] Longge的问题 - 欧拉函数
求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求 ...
- bzoj 2705 [SDOI2012]Longge的问题——欧拉函数大水题
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 撕逼题.不就是枚举gcd==d,求和phi[ n/d ]么. 然后预处理sqrt (n ...
- poj 2480 Longge's problem [ 欧拉函数 ]
传送门 Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7327 Accepted: 2 ...
- POJ 2480 Longge's problem 欧拉函数—————∑gcd(i, N) 1<=i <=N
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6383 Accepted: 2043 ...
- Bzoj-2705 Longge的问题 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2705 题意: 求 sigma(gcd(i,n), 1<=i<=n<2^3 ...
- [SDOI2012]Longge的问题 欧拉反演_欧拉函数
Code: #include<cstdio> #include<algorithm> #include<cmath> #include<string> ...
随机推荐
- docker搭建基于percona-xtradb-cluster方案的mysql集群
一.部署环境 序号 hostname ip 备注 1 manager107 10.0.3.107 centos7;3.10.0-957.1.3.el7.x86_64 2 worker68 10.0.3 ...
- ASP.NET Web用户控件
用户控件可用来实现页面中可重用的代码,是可以一次编写就多处方便使用的功能块.它们是 ASP.NET控件封装最简单的形式.由于它们最简单,因此创建和使用它们也是最简单的.用户控件实际上是把已有的服务器控 ...
- android xml实现animation 4种动画效果
animation有四种动画类型 分别为alpha(透明的渐变).rotate(旋转).scale(尺寸伸缩).translate(移动),二实现的分发有两种,一种是javaCode,另外一种是XML ...
- vue 中父子组件之间的交互
1,最直接的也是最简单的方法是利用props来数据传值. 子组件定义如下: props: { iconClass: { type: String, required: true }, classNam ...
- 学会了 python 的pip方法安装第三方库
超级开心啊!!!!!!!!!!!!! win10 打开cmd Installing with get-pip.py To install pip, securely download get-pip. ...
- php curl 登陆百度贴吧(经历记录)
这两天,因为公司需要,所以研究了一下百度文库的登陆方案.因为账号是购买的,只有一部分cookie值,所以不能通过正常的渠道登陆,所以只有通过curl模拟直接进行后台登陆.那么,问题来了.按照人家说的, ...
- $.ajax()各方法详解(转)
jquery中的ajax方法参数总是记不住,这里记录一下. 1.url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址. 2.type: 要求为String类型的参数,请求方式(p ...
- 9 udp广播
udp有广播 写信 tcp没有广播· 打电话 #coding=utf-8 import socket, sys dest = ('<broadcast>', 7788) # 创建udp ...
- springmvc 处理put,delete请求
前言:ajax用post编辑,删除提示越权操作状态为500,修改半晌最后大神指点说是:type修改为post和delete模式 最后还是一知半解,但是程序却正常使用了.当然注意我用的mvc,contr ...
- django生产环境中部署
https://www.cnblogs.com/chenice/p/6921727.html 本节内容 uwsgi 介绍 uwsgi安装使用 nginx安装配置 django with nginx 如 ...