HDU 3879 Base Station(最大权闭合子图)
经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法。
题意:输入n个点,m条边的无向图。点权为负,边权为正,点权为代价,边权为获益,输出最大获益。
(最大权闭合子图:图中各点的后继必然也在图中)
构图攻略:将边看做点,
若选某条边e[i](u,v,w),则必须选点u,v。由此构成一个有向图。也符合最大权闭合子图模型。
对原本的边e[i](u,v,w)连3条边(S,n+i,w),(n+i,u,inf),(n+i,v,inf)。
对原本的点v,连1条边(v,T,p[v])。
即正权点与源点连,负权点与汇点连。
求最大流,记所有边的正权和为sum,则sum-maxflow就是答案。
显然,sap图的点有n+m+2,边有(n+m*3)*2。
具体证明推导请移步前辈的论文或者别的网站也有很详细的介绍和步骤。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
#include <vector>
#include <string>
#include <set>
#include <queue>
using namespace std; #define ll long long
#define MP make_pair #define mxn 56000
#define mxe (51000*4*2)
#define inf 1e9
#define eps 1e-8 struct SAP{
int dis[mxn],pre[mxn],gap[mxn],arc[mxn];
int f[mxe],cap[mxe];
int head[mxn],nxt[mxe],vv[mxe],e;
void init(){e=0;memset(head,-1,sizeof(head));}
void add(int u,int v,int c){
vv[e]=v,cap[e]=c,nxt[e]=head[u],head[u]=e++;
vv[e]=u,cap[e]=0,nxt[e]=head[v],head[v]=e++;
}
ll max_flow(int s,int t,int n){
int q[mxn],j,mindis;
ll ans=0;
int ht=0,tl=1,u,v;
int low;
bool found,vis[mxn];
memset(dis,0,sizeof(dis));
memset(gap,0,sizeof(gap));
memset(vis,0,sizeof(vis));
memset(arc,-1,sizeof(arc));
memset(f,0,sizeof(f));
q[0]=t;vis[t]=true;dis[t]=0;gap[0]=1;
while(ht<tl){
u=q[ht++];
for(int i=head[u];i!=-1;i=nxt[i]){
v = vv[i];
if(!vis[v]){
vis[v]=true;
dis[v]=dis[u]+1;
q[tl++]=v;
gap[dis[v]]++;
arc[v]=head[v];
}
}
}
u=s;low=inf;pre[s]=s;
while(dis[s]<n){
found=false;
for(int &i=arc[u];i!=-1;i=nxt[i]){
if(dis[vv[i]]==dis[u]-1 && cap[i]>f[i]){
found=true;v=vv[i];
low=min(low,cap[i]-f[i]);
pre[v]=u;u=v;
if(u==t){
while(u!=s){
u=pre[u];
f[arc[u]]+=low;
f[arc[u]^1]-=low;
}
ans+=low;low=inf;
}
break;
}
}
if(found) continue;
mindis=n;
for(int i=head[u];i!=-1;i=nxt[i]){
if(mindis>dis[vv[i]] && cap[i]>f[i]){
mindis=dis[vv[j=i]];
arc[u]=i;
}
}
if(--gap[dis[u]]==0) return ans;
dis[u]=mindis+1;
gap[dis[u]]++;
u=pre[u];
}
return ans;
}
}sap;
int p[5050];
int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
for(int i=1;i<=n;++i) scanf("%d",p+i);
ll sum = 0;
sap.init();
for(int i=1;i<=m;++i){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
sap.add(n+m+1,n+i,c);
sap.add(n+i,a,inf);
sap.add(n+i,b,inf);
sum+=c;
}
for(int i=1;i<=n;++i)
sap.add(i,n+m+2,p[i]);
ll mf = sap.max_flow(n+m+1,n+m+2,n+m+2);
printf("%I64d\n",sum-mf);
}
return 0;
}
HDU 3879 Base Station(最大权闭合子图)的更多相关文章
- HDU 3879 Base Station(最大权闭合子图)
将第i个用户和他需要的基站连边,转化成求二分图的最大权闭合子图. 答案=正权点之和-最小割. # include <cstdio> # include <cstring> # ...
- hdu 3879 Base Station 最大权闭合图
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3879 A famous mobile communication company is plannin ...
- hdu3879 Base Station 最大权闭合子图 边权有正有负
/** 题目:hdu3879 Base Station 最大权闭合子图 边权有正有负 链接:http://acm.hdu.edu.cn/showproblem.php?pid=3879 题意:给出n个 ...
- HDU 3879 Base Station
Base Station Time Limit: 2000ms Memory Limit: 32768KB This problem will be judged on HDU. Original I ...
- hdu 5772 String problem 最大权闭合子图
String problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5772 Description This is a simple pro ...
- hdu 3917 Road constructions 最大权闭合子图
样例说明: n(城市数目) m(工程队数目) 每个工程队上交的税收 val[i] k(k个工程) xi yi ci costi , 工程队ci承包由xi到yi,政府的补贴为costi 注意 ...
- HDU 5855 Less Time, More profit 最大权闭合子图
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5855 Less Time, More profit Time Limit: 2000/1000 MS ...
- HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...
- HDU5855 Less Time, More profit(最大权闭合子图)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5855 Description The city planners plan to build ...
随机推荐
- Jquery DIV滚动至浏览器顶部位置固定
获取元素(这里定位元素A)距离顶部的高度,接着设定scroll滚动的事件,比如超过那个高度,把A的位置设定为fixed,小于该高度,修改回relative. 方法一: $(function() { v ...
- C/C++实践笔记 006
字符与字符串字符按照%d,打印ASCCII字符按%c,打印字符本身‘0’ 0 ‘\0’区别: char ch3=0; 等号会自动转换,转换成ASCCII值所对应的字符.即null或\0C字符串不可以直 ...
- AutoHotKey实现将站点添加到IE的Intranet本地站点
最近在内部推行CRM系统,其中的CPQ组件要求必须将站点加入到"本地Intranet”才可以正常使用,但是由于使用用户比较多(超过几千人),并且每个用户的计算机水平都不一样,所以让用户手工去 ...
- [Django 2]第一个django应用
1)增加应用 python3 manage.py startapp app-name 2. settings.py中,“INSTALLED_APPS”添加应用名称. 3. 在templates中新增网 ...
- 一个 -100.01 的double 在内存中怎么存储的. 一个中文String 在内存中占多少直接 utf-8 / GBK
一.-100.01 的double 在内存中怎么存储的 double双精度数据类型存储格式IEEE 双精度格式为8字节64位,由三个字段组成:52 位小数 f : 11 位偏置指数 e :以及 1 位 ...
- I finally made sense of front end build tools. You can, too.
来源于:https://medium.freecodecamp.com/making-sense-of-front-end-build-tools-3a1b3a87043b#.nvnd2vsd8 ...
- Django登录访问限制 login_requeired
作用: 1. 用户登录之后才可以访问某些页面 2. 如果没登录,跳转到登录页面 3. 用户在跳转的登陆界面中完成登陆后,自动访问跳转到之前访问的地址 要实现这个需求很简单就是在相应的view前面使用装 ...
- springMVC Aspect AOP 接口耗时统计
在接口开发中,我们通常需要统计接口耗时,为后续接口性能做统计.在springMVC中可以用它的aop来记录日志. 1.在spring配置文件中开启AOP <!--*************** ...
- asp.net mvc4+mysql做一个简单分页组件(部分视图)
在开始做mysql分页功能组件前,便设定的是要有一定可复用性.先在项目里Views文件夹下右键新建名为_PaginationComponent.cshtml,这里html及css我采用的bootstr ...
- 【USACO 2.4】Cow Tours (最短路)
题意:给你n(最多150)个点的坐标,给出邻接矩阵,并且整个图至少两个联通块,现在让你连接一条边,使得所有可联通的两点的最短距离的最大值最小. 题解:先dfs染色,再用floyd跑出原图的直径O($n ...