【数学/扩展欧几里得/线性求逆元】[Sdoi2008]沙拉公主的困惑
Description
大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。
Input
第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n
Output
共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值
首先以为n>=m,所以m!是n!的因数,所以每次找到一个与m!互质的数,那么我们就可以得到n!/m!个数与m!互质。
(i为质数)
(i为质数)#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm> #define maxn 10000000 typedef long long ll; using namespace std; int prime[maxn+],b=,inv[maxn+],mod,fac[maxn+],x,y,ans[maxn+]; bool is_prime[maxn+]; void exgcd(int n,int m)
{
if(m==){x=,y=;return;}
exgcd(m,n%m);
ll t=x;
x=y,y=t-n/m*y;
} void work()
{
inv[]=,fac[]=;
for(int i=;i<=maxn&&i<mod;i++)fac[i]=(ll)i*fac[i-]%mod;
for(int i=;i<=maxn;i++)
{
if(!is_prime[i])prime[++b]=i,exgcd(i,mod),inv[i]=(x%mod+mod)%mod;
int j=,t=*i;
while(j<=b&&t<=maxn)
{
is_prime[t]=;
if(i%prime[j]==)break;
// inv[t]=inv[i]*inv[prime[j]]%mod;
t=prime[++j]*i;
}
}
ans[]=;
for(int i=;i<=maxn;i++)
{
ans[i]=ans[i-];
if(!is_prime[i])ans[i]=(ll)ans[i]*(i-)%mod*inv[i]%mod;
}
} int main()
{
int T;
scanf("%d%d",&T,&mod);
work();
while(T--)
{
int x,y;
scanf("%d%d",&x,&y);
printf("%d\n",(ll)fac[x]*ans[y]%mod);
}
return ;
}
long long什么的卡的我不要不要的。。
【数学/扩展欧几里得/线性求逆元】[Sdoi2008]沙拉公主的困惑的更多相关文章
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉
本文为博主原创文章,欢迎转载,请注明出处 www.cnblogs.com/yangyaojia [SDOI2008]沙拉公主的困惑 线性筛 素数+欧拉 题目大意 给定n,m,求在1到n!内与m!互质的 ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数
BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑 欧拉函数
题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的 ...
- 【数论】【欧拉函数】【筛法求素数】【乘法逆元】【快速幂取模】bzoj2186 [Sdoi2008]沙拉公主的困惑
http://www.cnblogs.com/BLADEVIL/p/3490321.html http://www.cnblogs.com/zyfzyf/p/3997986.html 翻了翻题解,这两 ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
随机推荐
- Features for configuring JSON-to-Java mapping
Following on/off features are defined in DeserializationConfig.Feature (Jackson 1.x) or Deserializat ...
- Android之屏幕测试
MainActivity: package com.example.touchscreentest; import android.os.Bundle; import android.R.layout ...
- 开放封闭原则(OCP)
开放封闭原则 转:http://baike.baidu.com/view/2493421.htm转:http://dev.csdn.net/article/38/38826.shtm 开放封闭原则(O ...
- (转)理想化的 Redis 集群
一个豁达的关键是正确乐观的面对失败的系统.不需要过多的担心,需要一种去说那又怎样的能力.因此架构的设计是如此的重要.许多优秀的系统没有进一步成长的能力,我们应该做的是去使用其他的系统去共同分担工作. ...
- CSS 绝对定位和相对定位
CSS定位属性:一个定位属性,需配合四个定位坐标,实现定位 固定定位fixed 说明: 1.固定定位是相对于"浏览器窗口" 2.如果只设置了定位属性,未指定定位坐标时,元素将停留在 ...
- 百练_2945 拦截导弹(DP)
描述 某国为了防御敌国的导弹袭击,开发出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹来袭 ...
- 《JSON必知必会》
每天上下班在地铁上很适合看这种书,入门级.难点不多.简约不失严谨. 自从全面转向ASP.NET MVC,现在基本上每天都和JSON打交道,效率.习惯.速度都要掌握. 这本书读起来很快,所以读完也蛮有成 ...
- Git 技巧小结
本篇博客内的内容,主要摘抄自 廖雪峰的 Git教程,这篇教程写的通俗易懂,步步深入,是我见过最棒的Git教程了.下面的全部内容,摘抄自此教程,有需要的朋友,请看完整版. Git版本库 git在创建版本 ...
- iOS开发基础之ivars(实例变量)与@property(属性)
Objective-C带来了一个重大改进就是Non-fragile ivar.使得i一个类可以随意增加实例变量,不必对子类重新编译.对框架开发者(如苹果)有重大意义. 最新的编译器支持@propert ...
- centos7搭建NIS与NFS综合应用
实验环境: centos7(服务端) redhat enterprise linux 7.2(客户端) 实验目的:用centos7的账号,能在redhat enterprise linu ...