题意:

正方形四个边界上分别有n个点,将其划分为(n+1)2个四边形,求四边形面积的最大值。

分析:

因为n的规模很小,所以可以二重循环枚举求最大值。

求直线(a, 0) (b, 0) 和直线(0, c) (0, d)的交点,我是二元方程组求解得来的,然后再用叉积求面积即可。

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> const int maxn = + ;
struct HEHE
{
double a, b, c, d;
}hehe[maxn]; struct Point
{
double x, y;
Point(double x=, double y=):x(x), y(y) {}
};
typedef Point Vector; Vector operator - (const Vector& A, const Vector& B)
{ return Vector(A.x - B.x, A.y - B.y); } double Cross(const Vector& A, const Vector& B)
{ return (A.x*B.y - A.y*B.x); } Point GetIntersection(const double& a, const double& b, const double& c, const double& d)
{
double x = (a+(b-a)*c) / (-(b-a)*(d-c));
double y = (d-c)*x+c;
return Point(x, y);
} int main(void)
{
//freopen("2402in.txt", "r", stdin); int n;
while(scanf("%d", &n) == && n)
{
memset(hehe, , sizeof(hehe));
for(int i = ; i <= n; ++i) scanf("%lf", &hehe[i].a);
for(int i = ; i <= n; ++i) scanf("%lf", &hehe[i].b);
for(int i = ; i <= n; ++i) scanf("%lf", &hehe[i].c);
for(int i = ; i <= n; ++i) scanf("%lf", &hehe[i].d);
hehe[n+].a = hehe[n+].b = hehe[n+].c = hehe[n+].d = 1.0; double ans = 0.0;
for(int i = ; i <= n; ++i)
for(int j = ; j <= n; ++j)
{
Point A, B, C, D;
A = GetIntersection(hehe[i].a, hehe[i].b, hehe[j].c, hehe[j].d);
B = GetIntersection(hehe[i+].a, hehe[i+].b, hehe[j].c, hehe[j].d);
C = GetIntersection(hehe[i+].a, hehe[i+].b, hehe[j+].c, hehe[j+].d);
D = GetIntersection(hehe[i].a, hehe[i].b, hehe[j+].c, hehe[j+].d);
double temp = 0.0;
temp += Cross(B-A, C-A) / ;
temp += Cross(C-A, D-A) / ;
ans = std::max(ans, temp);
} printf("%.6f\n", ans);
} return ;
}

代码君

LA 2402 (枚举) Fishnet的更多相关文章

  1. POJ 1408 Fishnet【枚举+线段相交+叉积求面积】

    题目: http://poj.org/problem?id=1408 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  2. POJ 2402 Palindrome Numbers(LA 2889) 回文数

    POJ:http://poj.org/problem?id=2402 LA:https://icpcarchive.ecs.baylor.edu/index.php?option=com_online ...

  3. LA 4253 箭术(二分枚举)

    https://vjudge.net/problem/UVALive-4253 题意: 有n个平行于x轴的线段,每条线段代表一个靶子.判断是否可以站在x轴上[0,W]区间内的某个位置射箭. 思路:二分 ...

  4. LA 4794 状态DP+子集枚举

    状态压缩DP,把切割出的面积做状态压缩,统计出某状态下面积和. 设f(x,y,S)为在状态为S下在矩形x,y是否存在可能划分出S包含的面积.若S0是S的子集,对矩形x,y横切中竖切,对竖切若f(x,k ...

  5. LA 3695 部分枚举

    运用部分枚举的思想,很明显完全枚举点的思想是不可能的.改为枚举上下边界,当确定右边界j后,对左边界i,可以有点数为on[j]+on[i]+(leftu[j]-leftu[i])+leftd[j]-le ...

  6. LA 3887 - Slim Span 枚举+MST

    https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  7. LA 3602 - DNA Consensus String 枚举

    原题地址:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...

  8. LA 3602 DNA Consensus String (暴力枚举)

    题意:给定m个长度为n的DNA序列,求一个最短的DNA序列,使得总Hamming距离最小. Hamming距离等于字符不同的位置个数. 析:看到这个题,我的第一感觉是算时间复杂度,好小,没事,完全可以 ...

  9. LA 7049 Galaxy 枚举

    题意: \(x\)轴上有\(n\)个质量为\(1\)的点,他们的坐标分别为\(x_i\). 质心的坐标为\(\frac{\sum{x_i}} {n}\) 转动惯量为\(\sum{d_i^2}\),其中 ...

随机推荐

  1. [book]awesome-machine-learning books

    https://github.com/josephmisiti/awesome-machine-learning/blob/master/books.md Machine-Learning / Dat ...

  2. release下去除nslog宏

    #ifdef __OPTIMIZE__ #define NSLog(...) #endif 加在pch文件里面

  3. IntelliJ IDEA的Maven项目在修改时报java.lang.OutOfMemoryError: PermGen space异常

    什么也不说了---内存溢出,遇见太多回了,下面是解决方式: 1.在项目设置中新建Maven,然后设置VM: 2. 在pom.xml添加下面2个插件,一个是jrebel的,一个是jetty的 <b ...

  4. 【HTTP】Fiddler(一) - Fiddler简介

    1.为什么是Fiddler? 抓包工具有很多,小到最常用的web调试工具firebug,达到通用的强大的抓包工具wireshark.为什么使用fiddler?原因如下: a.Firebug虽然可以抓包 ...

  5. 【BZOJ】【1022】【SHOI2008】小约翰的游戏John

    博弈论 一看题,哇这不是Nim游戏么= =直接异或起来……啊咧怎么不对? 这道题是[Anti-Nim],普通的Nim是取走最后一个就赢,这题是取走最后一个输…… 做法参见 2009年贾志豪论文< ...

  6. [vijos 1770]大内密探

    描述 在古老的皇宫中,有N个房间以及N-1条双向通道,每条通道连接着两个不同的房间,所有的房间都能互相到达.皇宫中有许多的宝物,所以需要若干个大内密探来守护.一个房间被守护当切仅当该房间内有一名大内密 ...

  7. unity与Android相互调用

    原地址:http://www.cnblogs.com/ayanmw/p/3727782.html 现在unity 导出的android客户端需要调用 Android 的支付SDK,但是unity与an ...

  8. HDU 1087 Super Jumping! Jumping! Jumping!(最长上升子序列,dp)

    以下引用自:http://www.cnblogs.com/Lyush/archive/2011/08/31/2161314.html沐阳 该题可以算是一道经典的DP题了,题中数据是这样的.以 3 1 ...

  9. 深入理解JVM—Java 6 JVM参数配置说明

    原文地址:http://yhjhappy234.blog.163.com/blog/static/316328322011119111014657/ 使用说明< xmlnamespace pre ...

  10. http://www.cnblogs.com/huangcong/archive/2010/06/14/1757957.html

    http://www.cnblogs.com/huangcong/archive/2010/06/14/1757957.html http://www.cnblogs.com/langtianya/a ...