题目链接:http://lightoj.com/volume_showproblem.php?problem=1149

Description
You will be given two sets of integers. Let's call them set A and set B. Set A contains n elements and set B contains m elements. You have to remove k1 elements from set A and k2 elements from set B so that of the remaining values no integer in set B is a multiple of any integer in set A. k1 should be in the range [0, n] and k2 in the range [0, m]. You have to find the value of (k1 + k2) such that (k1 + k2) is as low as possible. P is a multiple of Q if there is some integer K such that P = K * Q. Suppose set A is {, , , } and set B is {, , , }. By removing and from A and from B, we get the sets {, } and {, , }. Here none of the integers , or is a multiple of or . So for this case the answer is (two from set A and one from set B). Input
Input starts with an integer T (≤ ), denoting the number of test cases. The first line of each case starts with an integer n followed by n positive integers. The second line starts with m followed by m positive integers. Both n and m will be in the range [, ]. Each element of the two sets will fit in a bit signed integer. Output
For each case of input, print the case number and the result. Sample Input Sample Output
Case :
Case :

方法:二分匹配,求最大匹配数

#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <math.h>
#include <algorithm>
#include <queue>
using namespace std; #define met(a,b) memset(a,b,sizeof(a))
#define ll long long
#define N 505
int Map[N][N],vis[N],used[N];
int a[N],b[N];
int n,m;
int han(int u)
{
for(int i=;i<=m;i++)
{
if(!vis[i] && Map[u][i])
{
vis[i]=;
if(!used[i] || han(used[i]))
{
used[i]=u;
return ;
}
}
}
return ;
}
int main()
{
int t,con=;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);met(Map,);
for(int i=;i<=n;i++)
scanf("%d",&a[i]);
scanf("%d",&m);
for(int i=;i<=m;i++)
scanf("%d",&b[i]);
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
if(b[j]%a[i]==)
Map[i][j]=;
}
met(used,);int sum=;
for(int i=;i<=n;i++)
{
met(vis,);
sum+=han(i);
} printf("Case %d: %d\n",con++,sum);
}
return ;
}

(LightOJ 1149) Factors and Multiples的更多相关文章

  1. Pairs Forming LCM (LightOJ - 1236)【简单数论】【质因数分解】【算术基本定理】(未完成)

    Pairs Forming LCM (LightOJ - 1236)[简单数论][质因数分解][算术基本定理](未完成) 标签: 入门讲座题解 数论 题目描述 Find the result of t ...

  2. Sigma Function (LightOJ - 1336)【简单数论】【算术基本定理】【思维】

    Sigma Function (LightOJ - 1336)[简单数论][算术基本定理][思维] 标签: 入门讲座题解 数论 题目描述 Sigma function is an interestin ...

  3. Goldbach`s Conjecture(LightOJ - 1259)【简单数论】【筛法】

    Goldbach`s Conjecture(LightOJ - 1259)[简单数论][筛法] 标签: 入门讲座题解 数论 题目描述 Goldbach's conjecture is one of t ...

  4. (最长公共子序列+推导)Love Calculator (lightOJ 1013)

    http://www.lightoj.com/volume_showproblem.php?problem=1013   Yes, you are developing a 'Love calcula ...

  5. (状压) Marriage Ceremonies (lightOJ 1011)

    http://www.lightoj.com/volume_showproblem.php?problem=1011 You work in a company which organizes mar ...

  6. A New Function(LightOJ 1098)积性函数前缀和的应用

    题意:要求对于1~n,每个数的约数(不包括1和其本身)的和. 题解:由于题目数据有2*10^9之大,因而不能直接暴力.需要考虑积性函数的特性,由于必定有重复的约数出现,因而可以对重复约数所在的区间进行 ...

  7. Harmonic Number (LightOJ 1234)(调和级数 或者 区块储存答案)

    题解:隔一段数字存一个答案,在查询时,只要找到距离n最近而且小于n的存答案值,再把剩余的暴力跑一遍就可以. #include <bits/stdc++.h> using namespace ...

  8. (LightOJ 1030)期望dp

    You are x N grid. Each cell of the cave can contain any amount of gold. Initially you are . Now each ...

  9. (LightOJ 1004) Monkey Banana Problem 简单dp

    You are in the world of mathematics to solve the great "Monkey Banana Problem". It states ...

随机推荐

  1. Serializable在C#中的作用.net中的对象序列化 (转)

    序列化是指将对象实例的状态存储到存储媒体的过程,在此过程中,先将对象的公共字段和私有字段以及类的名称(包括类所在的程序集)转 换为字节流,然后再把字节流写入数据流,在随后对对象进行反序列化时,将创建出 ...

  2. iOS 限制textField输入的长度

    1.电话号码(带3-3-4效果) //指定代理 self.phoneTextField.delegate = self; //当编辑改变的时候,进行字符校验 [self.phoneTextField ...

  3. linux下hexdump和od命令:显示文件十六进制格式

    Linux指令: od 示例用法:  od -c hello Linux指令:      od od命令用户通常使用od命令查看特殊格式的文件内容.通过指定该命令的不同选项可以以十进制.八进制.十六进 ...

  4. ThinkPHP Volist标签

    Volist标签主要用于在模板中循环输出数据集或者多维数组. volist标签(循环输出数据) 闭合 非闭合标签 属性 name(必须):要输出的数据模板变量 id(必须):循环变量 offset(可 ...

  5. location查询字符串解析

    function getQueryStringArgs() { //取得查询字符串并去掉开头的问号 var qs = (location.search.length >0? location.s ...

  6. memcached client --ref

    Clients Client API's / libraries Updated Jul 14, 2012 by dorma...@rydia.net ref:https://code.google. ...

  7. Android_ViewFlipper

    xml: <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:t ...

  8. Linux进程IPC

    IPC mechanisms supported by Linux include pipes, named pipes, semaphores, message queues, shared mem ...

  9. LLDB调试基本使用

    在平时开发中,我们可能需要调试某些东西,比如查看给服务器发请求时传过去的参数,如果不适用LLDB的话我们用的最多的就是通过NSLog方式去打印,但现在我们可以精简这个步骤,那就是使用LLDB调试命令. ...

  10. 关于JSP异常的处理

    jsp中错误处理页面-isErrorPage="true" 举例说明:mustBeError.jsp <%@ page contentType="text/html ...