[大牛翻译系列]Hadoop(17)MapReduce 文件处理:小文件
5.1 小文件
大数据这个概念似乎意味着处理GB级乃至更大的文件。实际上大数据可以是大量的小文件。比如说,日志文件通常增长到MB级时就会存档。这一节中将介绍在HDFS中有效地处理小文件的技术。
技术24 使用Avro存储多个小文件
假定有一个项目akin在google上搜索图片,并将数以百万计的图片存储分别在HDFS中。很不幸的是,这样做恰好碰上了HDFS和MapReduce的弱项,如下:
- Hadoop的NameNode将所有的HDFS元数据保存在内存中以加快速度。Yahoo估计平均每个文件需要600字节内存。那么10亿个文件就需要60GB内存。对于当下的中端服务器来说,60GB内存就显得太多了。
- 如果MapReduce的数据源是大量的文本文件或可分割文件,那么map任务个数就是这些文件占据的快的数量。如果MapReduce的数据源是成千上百万的文件,那么作业将会消耗大量的时间在内核中创建和销毁map任务进程上。这些时间将会比实际处理数据的时间还要长。
- 如果在一个有调度器的受控环境中运行MapReduce作业,那么map任务的个数可能是受到限制的。由于默认每个文件都需要至少一个map任务,这样就有可能因为任务过多而被调度器拒绝运行。
思考如下问题:文件的大小和HDFS块大小相比,大概是什么比例?50%,70%,还是90%。如果大数据项目启动后,又突然需要成倍地扩展需要处理的文件。如果扩展仅仅需要增加节点,而不需要重新设计Hadoop过程,迁移文件等,是不是很美妙的事情。思考这些问题并在设计阶段及早准备是很有必要的。
问题
需要处理HDFS中的大量文件,同时又不能超出NameNode的内存限制。
方案
最简单的方案就是将HDFS中的小文件打包到一个大的文件容器中。这个技术中将本地磁盘中所有的目标文件存储到HDFS中的一个单独的Avro文件。然后在MapReduce中处理Avro文件和其中的小文件。
讨论
图5.1中介绍了这个技术的第一部分,如何在HDFS中创建Avro文件。这样做可以减少HDFS中需要创建的文件数量,随之减少了NameNode的内存消耗。

Avro是由Hadoop之父Doug Cutting发明的数据序列化和PRC库。主要用于提高Hadoop数据交换,通用性和版本控制的能力。Avro有着很强的架构模式演化能力,相比它的竞争对手如SequenceFiles等有更明显的竞争优势。第3章中详细介绍了Avro和它的竞争对手们。
让我们来看看以下的JAVA代码如何创建Avro文件:
从目录中读取多个小文件并在HDFS中生成一个单一的Avro文件
public class SmallFilesWrite {
public static final String FIELD_FILENAME = "filename";
public static final String FIELD_CONTENTS = "contents";
private static final String SCHEMA_JSON =
"{\"type\": \"record\", \"name\": \"SmallFilesTest\", "
+ "\"fields\": ["
+ "{\"name\":\" + FIELD_FILENAME
+ "\", \"type\":\"string\"},"
+ "{\"name\":\" + FIELD_CONTENTS
+ "\", \"type\":\"bytes\"}]}";
public static final Schema SCHEMA = Schema.parse(SCHEMA_JSON);
public static void writeToAvro(File srcPath, OutputStream outputStream)throws IOException {
DataFileWriter<Object> writer =
new DataFileWriter<Object>(new GenericDatumWriter<Object>()).setSyncInterval(100);
writer.setCodec(CodecFactory.snappyCodec());
writer.create(SCHEMA, outputStream);
for (Object obj : FileUtils.listFiles(srcPath, null, false)) {
File file = (File) obj;
String filename = file.getAbsolutePath();
byte content[] = FileUtils.readFileToByteArray(file);
GenericRecord record = new GenericData.Record(SCHEMA);
record.put(FIELD_FILENAME, filename);
record.put(FIELD_CONTENTS, ByteBuffer.wrap(content));
writer.append(record);
System.out.println(file.getAbsolutePath() + ": " + DigestUtils.md5Hex(content));
}
IOUtils.cleanup(null, writer);
IOUtils.cleanup(null, outputStream);
}
public static void main(String... args) throws Exception {
Configuration config = new Configuration();
FileSystem hdfs = FileSystem.get(config);
File sourceDir = new File(args[0]);
Path destFile = new Path(args[1]);
OutputStream os = hdfs.create(destFile);
writeToAvro(sourceDir, os);
}
}
|
压缩依赖 为了运行这一章中的代码,需要在相应主机上安装Snappy和LZOP压缩编码器。请参考附录A来安装和配置。 |
然后观察这段代码以Hadoop的配置目录作为数据源的运行结果。
$ bin/run.sh \
com.manning.hip.ch5.SmallFilesWrite /etc/hadoop/conf test.avro
/etc/hadoop/conf/ssl-server.xml.example: cb6f1b218...
/etc/hadoop/conf/log4j.properties: 6920ca49b9790cb...
/etc/hadoop/conf/fair-scheduler.xml: b3e5f2bbb1d6c...
...
看起来很可靠。然后来确认HDFS中的输出文件:
$ hadoop fs -ls test.avro
-- : /user/aholmes/test.avro
为了确保所有都和预期一样,编写代码读取HDFS中的Avro文件,并输出每个文件内容的MD5哈希值。代码如下:
public class SmallFilesRead {
private static final String FIELD_FILENAME = "filename";
private static final String FIELD_CONTENTS = "contents";
public static void readFromAvro(InputStream is) throws IOException {
DataFileStream<Object> reader = new DataFileStream<Object>(is, new GenericDatumReader<Object>());
for (Object o : reader) {
GenericRecord r = (GenericRecord) o;
System.out.println(
r.get(FIELD_FILENAME) + ": " +
DigestUtils.md5Hex(((ByteBuffer) r.get(FIELD_CONTENTS)).array()));
}
IOUtils.cleanup(null, is);
IOUtils.cleanup(null, reader);
}
public static void main(String... args) throws Exception {
Configuration config = new Configuration();
FileSystem hdfs = FileSystem.get(config);
Path destFile = new Path(args[0]);
InputStream is = hdfs.open(destFile);
readFromAvro(is);
}
}
这段代码比前一段代码要简单。因为Avro将结构模式(schema)写入了每一个Avro文件。在逆序列化的时候,不需要告诉Avro结构模式的信息。现在来测试代码:
$ bin/run.sh com.manning.hip.ch5.SmallFilesRead test.avro
/etc/hadoop/conf/ssl-server.xml.example: cb6f1b21...
/etc/hadoop/conf/log4j.properties: 6920ca49b9790c...
/etc/hadoop/conf/fair-scheduler.xml: b3e5f2bbb1d6...
现在Avro文件就被存储在了HDFS中。下一步是用MapReduce处理文件。如图5.2所示,用一个只有Map的MapReduce作业读取Avro记录作为输入,然后输出一个包含有文件名和文件内容的MD5哈希值的文本文件。

以下是MapReduce作业的实现代码:
一个以包含了多个小文件的Avro文件作为输入源的MapReduce作业
public class SmallFilesMapReduce {
public static void main(String... args) throws Exception {
JobConf job = new JobConf();
job.setJarByClass(SmallFilesMapReduce.class);
Path input = new Path(args[0]);
Path output = new Path(args[1]);
output.getFileSystem(job).delete(output, true);
AvroJob.setInputSchema(job, SmallFilesWrite.SCHEMA);
job.setInputFormat(AvroInputFormat.class);
job.setOutputFormat(TextOutputFormat.class);
job.setMapperClass(Map.class);
FileInputFormat.setInputPaths(job, input);
FileOutputFormat.setOutputPath(job, output);
job.setNumReduceTasks(0);
JobClient.runJob(job);
}
public static class Mapper
implements Mapper<AvroWrapper<GenericRecord>, NullWritable, Text, Text> {
@Override
public void map(AvroWrapper<GenericRecord> key,
NullWritable value,
OutputCollector<Text, Text> output,
Reporter reporter) throws IOException {
outKey.set(key.datum().get(SmallFilesWrite.FIELD_FILENAME).toString());
outValue.set(DigestUtils.md5Hex(
((ByteBuffer) key.datum().get(SmallFilesWrite.FIELD_CONTENTS))
.array()));
output.collect(outKey, outValue);
}
}
}
如果将前面代码创建的Avro文件作为输入源,那么这个作业的日志文件将包含最初的文件名和它们的哈希值。执行过程如下:
$ bin/run.sh com.manning.hip.ch5.SmallFilesMapReduce test.avro output
$ hadoop fs -cat output/part*
/etc/hadoop/conf/capacity-scheduler.xml: 0601a2..
/etc/hadoop/conf/taskcontroller.cfg: 5c2c191420...
/etc/hadoop/conf/configuration.xsl: e4e5e17b4a8...
...
这个技术假设需要处理的文件时无法连接合并的,如图像文件。如果文件可以连接,那么就可以考虑其它的方案。使用Avro应尽可能保证文件的大小和HDFS快的大小相当,以减少NameNode中需要存储的数据。
小结
也可以用Hadoop的SequenceFile来处理小文件。SequenceFile是一个更成熟的技术,比Avro出现时间更长。但是SequenceFiles是JAVA专用的,相比Avro相比丰富的交互性和版本控制语义。
Google的Protocol Buffers和源自Facebook的Apache Thrift都可以用来处理小文件。但是缺乏相应的InputFormat来配合它们。
另外一个方法是将文件打包成zip文件。但其中的问题是,必须自定义InputFormat来处理zip文件。同时zip文件无法分块。不过分块问题可以通过打包成多个大小和HDFS块相近的zip文件。
Hadoop还提供了CombineFileInputFormat。它能够让一个单独的map任务处理来自多个文件的多个输入块,以极大地减少需要运行的map任务个数。
在类似的方法中,也可以在Hadoop中配置,使map任务的JVM可以处理多个任务,来减少JVM循环的开支。配置项mapred.job.reuse.jvm.num.tasks默认为1.这说明一个JVM只能处理一个任务。当它被配置为更大的数字的时候,一个JVM可以处理多个任务。-1则代表着处理的任务数量无上限。
此外,也可以创建一个tarball文件来装载所有的文件,然后生成一个文本文件描述HDFS中的tarball文件的位置信息。文本文件将会被作为MapReduce作业的输入源。Map任务将会直接打开tarball。但是这种方法将会损害MapReduce的本地性。也就是说,map任务需要在包含那个文本文件的节点上运行,然而包含tarball文件的HDFS很可能在另外一个节点上,这就增加了网络IO的成本。
Hadoop打包文件(HAR)是Hadoop专用于解决小文件问题的文件。它是基于HDFS的虚拟文件系统。HAR的缺陷在于无法优化MapReduce的本地磁盘访问性能,而且无法被压缩。
Hadoop 2.x版本支持HDFS联合机制。在HDFS联合机制中,HDFS被分区成多个不同的名字空间,由不同的NameNode分别管理。然后,NameNode的快信息缓存的内存压力可以由多个NameNode共同承担。最终支持了更大数量的小文件。Hortonworks有一片关于HDFS联合机制的博客:http://hortonworks.com/an-introduction-to-hdfs-federation/。
最后一个方法是MapR。MapR拥有自己的分布式文件系统,支持大量的小文件。但是,应用MapR作为分布式存储系统将会带来很大的系统变更。也就是说,几乎不可能通过应用MapR来解决HDFS中的小文件问题。
在Hadoop中有可能多次碰到小文件的问题。直接使用小文件将会使NameNode的内存消耗迅速增大,并拖累MapReduce的运行时间。这个技术可以帮助缓解这个问题,通过将小文件打包到更大的容器文件中。选择Avro的原因是,它支持可分块文件,压缩。Avro的结构模式语言有利于版本控制。
假定需要处理的不是小文件,而是超大文件。那么应当如何有效地存储数据?如何在Hadoop中压缩数据?MapReduce中应当如何处理?这将是下一节的内容。
[大牛翻译系列]Hadoop(17)MapReduce 文件处理:小文件的更多相关文章
- [大牛翻译系列]Hadoop(19)MapReduce 文件处理:基于压缩的高效存储(二)
5.2 基于压缩的高效存储(续) (仅包括技术27) 技术27 在MapReduce,Hive和Pig中使用可分块的LZOP 如果一个文本文件即使经过压缩后仍然比HDFS的块的大小要大,就需要考虑选择 ...
- [大牛翻译系列]Hadoop(18)MapReduce 文件处理:基于压缩的高效存储(一)
5.2 基于压缩的高效存储 (仅包括技术25,和技术26) 数据压缩可以减小数据的大小,节约空间,提高数据传输的效率.在处理文件中,压缩很重要.在处理Hadoop的文件时,更是如此.为了让Hadoop ...
- [大牛翻译系列]Hadoop(5)MapReduce 排序:次排序(Secondary sort)
4.2 排序(SORT) 在MapReduce中,排序的目的有两个: MapReduce可以通过排序将Map输出的键分组.然后每组键调用一次reduce. 在某些需要排序的特定场景中,用户可以将作业( ...
- [大牛翻译系列]Hadoop(9)MapReduce 性能调优:理解性能瓶颈,诊断map性能瓶颈
6.2 诊断性能瓶颈 有的时候作业的执行时间会长得惊人.想靠猜也是很难猜对问题在哪.这一章中将介绍如何界定问题,找到根源.涉及的工具中有的是Hadoop自带的,有的是本书提供的. 系统监控和Hadoo ...
- [大牛翻译系列]Hadoop(8)MapReduce 性能调优:性能测量(Measuring)
6.1 测量MapReduce和环境的性能指标 性能调优的基础系统的性能指标和实验数据.依据这些指标和数据,才能找到系统的性能瓶颈.性能指标和实验数据要通过一系列的工具和过程才能得到. 这部分里,将介 ...
- [大牛翻译系列]Hadoop 翻译文章索引
原书章节 原书章节题目 翻译文章序号 翻译文章题目 链接 4.1 Joining Hadoop(1) MapReduce 连接:重分区连接(Repartition join) http://www.c ...
- [大牛翻译系列]Hadoop(22)附录D.2 复制连接框架
附录D.2 复制连接框架 复制连接是map端连接,得名于它的具体实现:连接中最小的数据集将会被复制到所有的map主机节点.复制连接的实现非常直接明了.更具体的内容可以参考Chunk Lam的<H ...
- [大牛翻译系列]Hadoop(7)MapReduce:抽样(Sampling)
4.3 抽样(Sampling) 用基于MapReduce的程序来处理TB级的数据集,要花费的时间可能是数以小时计.仅仅是优化代码是很难达到良好的效果. 在开发和调试代码的时候,没有必要处理整个数据集 ...
- [大牛翻译系列]Hadoop(10)MapReduce 性能调优:诊断reduce性能瓶颈
6.2.3 Reduce的性能问题 Reduce的性能问题有和map类似的方面,也有和map不同的方面.图6.13是reduce任务的具体的执行各阶段,标识了可能影响性能的区域. 这一章将介绍影响re ...
随机推荐
- 1.4.2 solr字段类型--(1.4.2.3)使用货币和汇率
1.4.2 solr字段类型 (1.4.2.1) 字段类型定义和字段类型属性. (1.4.2.2) solr附带的字段类型 (1.4.2.3) 使用货币和汇率 (1.4.2.4) 使用Dates(日期 ...
- Emacs golang 配置
在配置前需要下载用到的包: godoc godef gocode oracle 在下载包之前需要设置好环境变量: # Golang export GOROOT=$HOME/go export GOPA ...
- C#基础回顾以及if语句
一.输入和输出Console.Write("字符串")Console.WriteLine("字符串")string s = Console.ReadLine() ...
- 两种局部刷新UITableView的方法的使用条件
- (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath{ //1.取消选 ...
- MSP下载方式
MSP430无论是仿真还是烧写程序,一般可以通过:JTAG.SBW.BSL接口进行. 1.JTAG是利用边界扫描技术,在430内部有逻辑接口给JTAG使用,内部有若干个寄存器连接到了430内部数据地址 ...
- django 学习-12 Django表单 初步
1.先创建项目和应用 django.admin.py startproject cs cd cs django.admin.py startapp blog 2.vim setti ...
- 十个顶级的C语言资源助你成为优秀的程序员
译者言:学习C语言,需要一点一滴,沉下心来,找个安静的地方,泡上一杯咖啡,在浓郁的香味中一起品味她.(by Boatman Yang) 人们通常认为计算机编程很烦,但是有些人却从中发现了乐趣.每一个程 ...
- SVG之初识
什么是SVG? 也许现在很多人都听说过SVG的人比较多,但不一定了解什么是SVG:SVG(Scalable Vector Graphics 一大串看不懂的英文)可伸缩矢量图形,它是用XML格式来定义用 ...
- hexo搭建静态博客
1. 环境环境 1.1 安装Git 请参考[1] 1.2 安装node.js 下载:http://nodejs.org/download/ 可以下载 node-v0.10.33-x64.msi 安装时 ...
- 【Linux C中文函数手册】之 内存和字符串函数
内存和字符串函数 1) bcmp 比较内存内容 相关函数 bcmp,strcasecmp,strcmp,strcoll,strncmp,strncasecmp表头文件 #include<stri ...