Dead Fraction
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 1762   Accepted: 568

Description

Mike is frantically scrambling to finish his thesis at the last minute. He needs to assemble all his research notes into vaguely coherent form in the next 3 days. Unfortunately, he notices that he had been extremely sloppy in his calculations. Whenever he needed to perform arithmetic, he just plugged it into a calculator and scribbled down as much of the answer as he felt was relevant. Whenever a repeating fraction was displayed, Mike simply reccorded the first few digits followed by "...". For instance, instead of "1/3" he might have written down "0.3333...". Unfortunately, his results require exact fractions! He doesn't have time to redo every calculation, so he needs you to write a program (and FAST!) to automatically deduce the original fractions. 
To make this tenable, he assumes that the original fraction is always the simplest one that produces the given sequence of digits; by simplest, he means the the one with smallest denominator. Also, he assumes that he did not neglect to write down important digits; no digit from the repeating portion of the decimal expansion was left unrecorded (even if this repeating portion was all zeroes).

Input

There are several test cases. For each test case there is one line of input of the form "0.dddd..." where dddd is a string of 1 to 9 digits, not all zero. A line containing 0 follows the last case.

Output

For each case, output the original fraction.

Sample Input

0.2...
0.20...
0.474612399...
0

Sample Output

2/9
1/5
1186531/2500000

Hint

Note that an exact decimal fraction has two repeating expansions (e.g. 1/5 = 0.2000... = 0.19999...).

Source

 
将分数分成循环的部分和非循环的部分
设分数为0.i1 i2 i3 i4 .. ik j1 j2 j3 .. jc               其中i1 ~ ik 为非循环的部分    j1 ~ jc为循环部分
非循环的部分可以拆成 b / a 其中 b = ( i1...ik)   a = 10 ^ (k)
循环的部分可以拆成  bb / aa 其中 bb = (j1 .. jc)  aa = 10 ^ (k + c) - 10 ^ ( k);
 
则 所求分数为 b / a + bb / aa     通分得 (b * aa + bb * a) / a * aa       约分得答案,由于据说数据会有全是0的坑爹数据,所以要判断一下
 
 
 #include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream> using namespace std; typedef long long ll; char s[];
ll ten_pow[]; ll gcd(ll x,ll y) {
return y > ? gcd(y,x % y) : x;
} void init() {
ten_pow[] = ;
for(int i = ; i <= ; i++) {
ten_pow[i] = ten_pow[i - ] * ;
} /*for(int i = 0; i <= 9; i++){
printf("%lld\n",ten_pow[i]); }*/
}
void solve() { ll a,b,aa,bb;
ll ans1,ans2 = -;
for(int i = ; i < strlen(s) - ; i++) {
b = ; bb = ;
for(int j = ; j < + i; j++) {
b += (s[j] - '') * ten_pow[ + i - j];
}
for(int j = + i; j < strlen(s); j++){
bb += (s[j] - '') * ten_pow[strlen(s) - - j];
} a = ten_pow[i];
aa = ten_pow[strlen(s) - ] - ten_pow[i];
// printf("b =%lld bb=%lld a = %lld aa = %lld\n",b,bb,a,aa); b = b * aa + bb * a;
a *= aa; ll t = gcd(a,b);
b /= t;
a /= t; //printf("a = %lld b = %lld\n",a,b);
if(ans2 == - || ans2 > a) {
ans2 = a;
ans1 = b;
} } printf("%I64d/%I64d\n",ans1,ans2); } int main() {
init();
// freopen("sw.in","r",stdin); while(~scanf("%s",s) && strlen(s) != ) { int pos = strlen(s) - ;
while(s[pos] == '.') {
s[pos--] = '\0';
} bool flag = ;
for(int i = ; i < strlen(s); i++) {
if(s[i] != '' ) flag = ; } //puts(s); if(!flag) {
printf("0/1\n");
continue;
} solve(); } return ;
}

POJ 1930的更多相关文章

  1. POJ 1930 Dead Fraction

    POJ 1930 Dead Rraction 此题是一个将无限循环小数转化为分数的题目 对于一个数 x=0.abcdefdef.... 假设其不循环部分的长度为m(如abc的长度为m),循环节的长度为 ...

  2. Mathematics:Dead Fraction(POJ 1930)

    消失了的分式 题目大意:某个人在赶论文,需要把里面有些写成小数的数字化为分式,这些小数是无限循环小数(有理数),要你找对应的分母最小的那个分式(也就是从哪里开始循环并不知道). 一开始我也是蒙了,这尼 ...

  3. POJ 1930 Dead Fraction (循环小数-GCD)

    题意:给你一个循环小数,化成分数,要求分数的分母最小. 思路:暴力搜一遍循环节 把循环小数化分数步骤: 纯循环小数化分数 纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位 ...

  4. poj 1930 Dead Fraction(循环小数化分数)

    Dead Fraction Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 3478   Accepted: 1162 Des ...

  5. ProgrammingContestChallengeBook

    POJ 1852 Ants POJ 2386 Lake Counting POJ 1979 Red and Black AOJ 0118 Property Distribution AOJ 0333 ...

  6. 一些关于中国剩余定理的数论题(POJ 2891/HDU 3579/HDU 1573/HDU 1930)

    2891 -- Strange Way to Express Integers import java.math.BigInteger; import java.util.Scanner; publi ...

  7. poj 题目分类(1)

    poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...

  8. POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)

    本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...

  9. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

随机推荐

  1. Template_16_模板与继承

    1,名称模板参数template <typename PolicySetter1 = DefaultPolicy1,    typename PolicySetter2 = DefaultPol ...

  2. [windows phone开发]新生助手的开发过程与体会二

    上一讲咱们谈了新生助手主页的基本的设计,今天我们谈一谈关于展现实景地图时等动画的设计,即Storyboard的应用. 在Windows phone中,Storyboard类表示通过时间线控制动画,并为 ...

  3. 使用FormData上传文件、图片

    关于FormData XMLHttpRequest Level 2添加了一个新的接口  ---- FormData 利用FormData对象,可以通过js用一些键值对来模拟一系列表单控件,可以使用XM ...

  4. jquery源码分析学习地址

    http://www.ccvita.com/121.htmljQuery工作原理解析以及源代码示例http://www.cnblogs.com/haogj/archive/2010/04/19/171 ...

  5. Windows下MySQLroot密码破解

    Win下MySQL修改root密码的多种方法       ##win2003mysql的密码破解 方法1: 用SET PASSWORD命令 mysql -u root mysql> SET PA ...

  6. php保存base64数据

    php保存base64数据 if(isset($param['cover_pic']) && !empty($param['cover_pic'])) {
 if (preg_matc ...

  7. [大牛翻译系列]Hadoop(15)MapReduce 性能调优:优化MapReduce的用户JAVA代码

    6.4.5 优化MapReduce用户JAVA代码 MapReduce执行代码的方式和普通JAVA应用不同.这是由于MapReduce框架为了能够高效地处理海量数据,需要成百万次调用map和reduc ...

  8. Eclipse 代码提示功能设置。

    1.        解决实例化时自动补全不必要的单词问题 2.        以MyEclipse 6.5重新配图 鉴 于网上的批评之声甚大,我只想说明我的想法:这样的增强代码提示,最终是用来辅助我们 ...

  9. JS面向对象编程创建类的方式

    js创建类的方式有几种,大致如下: 1,构造函数方式: function Car(parameters) { this.name = "objectboy"; } var cat1 ...

  10. Python脚本控制的WebDriver 常用操作 <十九> 获取测试对象的状态

    下面将使用webdriver来模拟测试中观察测试对象的状态的操作 测试用例场景 在web自动化测试中,我们需要获取测试对象的四种状态 是否显示.使用element.is_displayed()方法: ...