bzoj1789 AHOI 维护数列(线段树)
首先想到线段树,然后刚开始写忽然想到树状数组求和岂不是更快,而且编程复杂度又小,于是把之前写的删掉,写树状数组,写完模版之后忽然发现这题竟然是区间修改!
于是又删掉重写,忽然发现不会处理又加又乘的,果断看题解……
经过几乎两个小时的调试,终于1A。
需要注意的是,一定要让线段树的每一个区间保存的值时刻为正确的,这样才能在调用时直接返回。比如说这道题的change和query操作的最后一句话:
sum:=f(g[k<<1]+g[k<<1+1])
而不是
sum:=f(t[k<<1].sum+t[k<<1+1].sum)
时刻记住这点就ok了。一开始我还以为我的模版记错了呢……
代码:
type node=record
l,r,ti,ad,sum:int64;
end;
var i,n,m,tagtime,tagadd,ch,x,y,c,p:longint;
t:array[..] of node;
function f(x:int64):int64;
begin
f:=x mod p;
end;
function g(k:longint):longint;
begin
with t[k] do
begin
g:=f(f(sum*ti)+f(ad*(r-l+)));
end;
end;
procedure build(x,y,k:longint);
var mid:longint;
begin
with t[k] do
begin
l:=x;r:=y;ad:=;ti:=;
if l=r then begin read(sum);sum:=f(sum);exit;end;
mid:=(l+r)>>;
build(l,mid,k<<);
build(mid+,r,k<<+);
sum:=f(t[k<<].sum+t[k<<+].sum);
end;
end;
procedure pushdown(k:longint);
begin
with t[k] do
begin
if ti<> then
begin
sum:=f(sum*ti);
t[k<<].ti:=f(t[k<<].ti*ti);
t[k<<].ad:=f(t[k<<].ad*ti);
t[k<<+].ti:=f(t[k<<+].ti*ti);
t[k<<+].ad:=f(t[k<<+].ad*ti);
ti:=;
end;
if ad<> then
begin
sum:=f(sum+ad*(r-l+));
t[k<<].ad:=f(t[k<<].ad+ad);
t[k<<+].ad:=f(t[k<<+].ad+ad);
ad:=;
end;
end;
end;
procedure change(x,y,k:longint);
var mid:longint;
begin
with t[k] do
begin
if (l=x) and (r=y) then
begin
ti:=(ti*tagtime) mod p;
ad:=(ad*tagtime+tagadd) mod p;
exit;
end;
pushdown(k);
mid:=(l+r)>>;
if y<=mid then change(x,y,k<<)
else if x>mid then change(x,y,k<<+)
else
begin
change(x,mid,k<<);
change(mid+,y,k<<+);
end;
sum:=f(g(k<<)+g(k<<+));
end;
end;
function query(x,y,k:longint):longint;
var mid:longint;
begin
with t[k] do
begin
pushdown(k);
if (l=x) and (r=y) then exit(f(sum));
mid:=(l+r)>>;
if y<=mid then query:=f(query(x,y,k<<))
else if x>mid then query:=f(query(x,y,k<<+))
else query:=f(f(query(x,mid,k<<))+f(query(mid+,y,k<<+)));
sum:=f(g(k<<)+g(k<<+));
end;
end;
procedure init;
begin
readln(n,p);
build(,n,);
end;
procedure main;
begin
readln(m);
for i:= to m do
begin
read(ch);
if ch= then
begin
readln(x,y,tagtime);
tagadd:=;
change(x,y,);
end
else if ch= then
begin
readln(x,y,tagadd);
tagtime:=;
change(x,y,);
end
else
begin
readln(x,y);
writeln(query(x,y,));
end;
end;
end;
begin
init;
main;
end.
虽然现在已经12:30了,但我感觉,很开心。做了这道题,值!
bzoj1789 AHOI 维护数列(线段树)的更多相关文章
- [AHOI2009]维护序列 (线段树)
题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,-,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...
- [P2023][AHOI2009]维护序列(线段树)
题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...
- BZOJ1798[Ahoi2009]维护序列——线段树
题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2 ...
- 【AHOI2009】 维护序列 - 线段树
题目描述 老师交给小可可一个维护数列的任务,现在小可可希望你来帮他完成. 有长为N的数列,不妨设为a1,a2,…,aN .有如下三种操作形式: (1)把数列中的一段数全部乘一个值; (2)把数列中的一 ...
- Codeforces 446C - DZY Loves Fibonacci Numbers(斐波那契数列+线段树)
Codeforces 题目传送门 & 洛谷题目传送门 你可能会疑惑我为什么要写 *2400 的题的题解 首先一个很明显的想法是,看到斐波那契数列和 \(10^9+9\) 就想到通项公式,\(F ...
- BZOJ.5286.[AHOI/HNOI2018]转盘(线段树)
BZOJ LOJ 洛谷 如果从\(1\)开始,把每个时间\(t_i\)减去\(i\),答案取决于\(\max\{t_i-i\}\).记取得最大值的位置是\(p\),答案是\(t_p+1+n-1-p=\ ...
- BZOJ 1798 AHOI2009 Seq 维护序列 线段树
题目大意:维护一个序列,提供三种操作: 1.将区间中每个点的权值乘上一个数 2.将区间中每个点的权值加上一个数 3.求一段区间的和对p取模的值 2631的超^n级弱化版.写2631之前能够拿这个练练手 ...
- P3703 [SDOI2017]树点涂色 LCT维护颜色+线段树维护dfs序+倍增LCA
\(\color{#0066ff}{ 题目描述 }\) Bob有一棵\(n\)个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同. 定义一条路径的权值是:这条路径上的点 ...
- P1438 无聊的数列 (线段树)
题目链接 Solution 直接维护一个差分的线段树就好了. 其中线段树的节点代表 \(r\) 比 \(l\) 多多少. Code #include<bits/stdc++.h> #def ...
随机推荐
- vim使用大全
鸟哥介绍的几个高级功能 1. 区块选择的按键意义 v 字符选择,会将光标经过的地方反白选择! V 行选择,会将光标经过的行反白选择! [Ctrl]+v 区块选择,可以用长方形的方式选择资料 y 将 ...
- 在制作joomla模板过程中遇到的问题
'''问题1.'''在jjc首页中两个通知公告和基建首页的两个模块中,当我点击查看文章标题是,而通知公告和最新动态页一直都还显示,发现文章一直在网站的下部,而不显示在它应该显示的main_rigth模 ...
- C语言字符串与字符数组
字符串儿与字符数组 字符数组的定义: Char buffer[]; 字符数组初始化: Char buffer1[]="hello world"; 利用scanf输入一个字符串儿 代 ...
- 使用公钥登录SSL
在本地生成密钥对 ssh-keygen -t rsa 如果不想设置密码,可以直接点击回车. 如果你想使用DSA可以用-t DSA替换. 确保远程计算机上用户目录下有.ssh目录 确保你的连接服务器上的 ...
- 约束的DEFERRABLE, NOT DEFERRABLE, INITIALLY IMMEDIATE 和 INITIALLY DEFERRED
[ CONSTRAINT constraint_name ] { NOT NULL | NULL | CHECK ( expression ) [ NO INHERIT ] | DEFAU ...
- EXPLAIN PLAN获取SQL语句执行计划
一.获取SQL语句执行计划的方式 1. 使用explain plan 将执行计划加载到表plan_table,然后查询该表来获取预估的执行计划 2. 启用执行计划跟踪功能,即autotrace功能 3 ...
- AOP和IOC个人理解
14:18 2014/5/5 IOC inversion of control 控制反转 将new对象的权力由调用者转移到spring容器(即xml文件),Struts2与Spring整合(scop ...
- hdu 2566 统计硬币
http://acm.hdu.edu.cn/showproblem.php?pid=2566 假设一堆由1分.2分.5分组成的n个硬币总面值为m分,求一共有多少种可能的组合方式(某种面值的硬币可以数量 ...
- hdu 4715 Difference Between Primes(素数筛选+树状数组哈希剪枝)
http://acm.hdu.edu.cn/showproblem.php?pid=4715 [code]: #include <iostream> #include <cstdio ...
- Matlab中sortrows函数解析
一.问题来源 返回检索到的数据(按相关度排序)在原始数据中的索引. 二.问题解析 x = [1 4 3 5; 1 3 2 6]:sortrows(x)其结果是按照row来排列,默认首先排第一列,1和1 ...