最大类间方差法是由日本学者大津于1979年提出的,是一种自适应的阈值确定的方法,又叫大津

法,简称OTSU。它是按图像的灰度特性,将图像分成背景和目标2部分。背景和目标之间的类间方差
越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分为目标都会导致2部
分差别变小。因此,使类间方差最大的分割意味着错分概率最小。
对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比
例记为ω0,其平均灰度μ0;背景像素点数占整幅图像的比例为ω1,其平均灰度为μ1。图像的总平均
灰度记为μ,类间方差记为g。
假设图像的背景较暗,并且图像的大小为M×N,
图像中像素的灰度值小于阈值T的像素个数记作N0,像素灰度大于阈值T的像素个数记作N1,则有:
      ω0=N0/ M×N (1)
      ω1=N1/ M×N (2)
      N0+N1=M×N (3)
      ω0+ω1=1 (4)
      μ=ω0*μ0+ω1*μ1 (5)
      g=ω0(μ0-μ)^2+ω1(μ1-μ)^2 (6)
将式(5)代入式(6),得到等价公式: g=ω0ω1(μ0-μ1)^2 (7)
采用遍历的方法得到使类间方差最大的阈值T,即为所求。

Otsu算法步骤如下:
设图象包含L个灰度级(0,1…,L-1),灰度值为i的的象素点数为Ni ,图象总的象素点数为N=N0+N1+...+N(L-1)。灰度值为i的点的概为:
P(i) = N(i)/N.
门限t将整幅图象分为暗区c1和亮区c2两类,则类间方差σ是t的函数:
σ=a1*a2(u1-u2)^2 (2)
式中,aj 为类cj的面积与图象总面积之比,a1 = sum(P(i)) i->t, a2 = 1-a1; uj为类cj的均值,u1 = sum(i*P(i))/a1 0->t, 
u2 = sum(i*P(i))/a2, t+1->L-1 
该法选择最佳门限t^ 使类间方差最大,即:令Δu=u1-u2,σb = max{a1(t)*a2(t)Δu^2}

/****************************************以下部分内容为原创;OTSU代码**********************************************/

首先是自己实现的OTSU,原来不知道MATLAB直接有就自己编了……崩溃啊!

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%OTSU 最大类间方差法图像分类
%该方法将图像分为前景和背景两部分,背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,
%当部分目标错分为背景或部分背景错分为目标都会导致2部分差别变小。因此,使类间方差最大的分割意味着错分概率最小。
%Command 中调用方式: OTSU('D:\Images\pic_loc\1870405130305041503.jpg')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function th=thresh_md(a);
x=imread(a);
a=rgb2gray(x);
subplot(211);
imshow(a,[]);
%[count x]=imhist(a);
[m,n]=size(a);
N=m*n;
L=256; for i=1:L
count(i)=length(find(a==(i-1)));
f(i)=count(i)/(N);
end for i=1:L
if count(i)~=0
st=i-1;
break;
end
end
for i=L:-1:1
if count(i)~=0
nd=i-1;
break;
end
end
%f=count(st+1:nd+1); %f是每个灰度出现的概率
p=st; q=nd-st;
u=0;
for i=1:q
u=u+f(i)*(p+i-1); %u是像素的平均值
ua(i)=u; %ua(i)是前i个像素的平均灰度值
end; for i=1:q
w(i)=sum(f(1:i)); %w(i)是前i个像素的累加概率
end; w=w+0.0001; d=(u*w-ua).^2./(w.*(1-w));
[y,tp]=max(d); %可以取出数组的最大值及取最大值的点
th=tp+p; for i=1:m
for j=1:n
if a(i,j)>th
a(i,j)=0;
else
a(i,j)=255;
end
end
end
subplot(212);
imshow(a,[]);

下面直接调用MATLAB的函数:

I=imread('D:\Images\pic_loc\1870405130305041503.jpg');
a=rgb2gray(I);
level = graythresh(a);
a=im2bw(a,level);
imshow(a,[]);

实验结果:

 
http://blog.csdn.net/abcjennifer/article/details/6671288

图像二值化----otsu(最大类间方差法、大津算法)的更多相关文章

  1. 自适应阈值二值化之最大类间方差法(大津法,OTSU)

    最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU.它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间 ...

  2. Win8 Metro(C#)数字图像处理--2.55OSTU法图像二值化

    原文:Win8 Metro(C#)数字图像处理--2.55OSTU法图像二值化  [函数名称] Ostu法图像二值化      WriteableBitmap OstuThSegment(Writ ...

  3. openCV_java 图像二值化

    较为常用的图像二值化方法有:1)全局固定阈值:2)局部自适应阈值:3)OTSU等. 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值.这样做的好处在于每个像素位置处的二值化 ...

  4. [python-opencv]图像二值化【图像阈值】

    图像二值化[图像阈值]简介: 如果灰度图像的像素值大于阈值,则为其分配一个值(可以是白色255),否则为其分配另一个值(可以是黑色0) 图像二值化就是将灰度图像上的像素值设置为0或255,也就是将整个 ...

  5. OpenCV_基于局部自适应阈值的图像二值化

    在图像处理应用中二值化操作是一个很常用的处理方式,例如零器件图片的处理.文本图片和验证码图片中字符的提取.车牌识别中的字符分割,以及视频图像中的运动目标检测中的前景分割,等等. 较为常用的图像二值化方 ...

  6. python实现图像二值化

    1.什么是图像二值化 彩色图像: 有blue,green,red三个通道,取值范围均为0-255 灰度图:只有一个通道0-255,所以一共有256种颜色 二值图像:只有两种颜色,黑色和白色,二值化就是 ...

  7. C# 指针操作图像 二值化处理

    /// <summary> /// 二值化图像 /// </summary> /// <param name="bmp"></param& ...

  8. MATLAB:图像二值化、互补图(反运算)(im2bw,imcomplement函数)

    图像二值化.反运算过程涉及到im2bw,imcomplement函数,反运算可以这么理解:原本黑的区域变为白的区域,白的区域变为黑的区域. 实现过程如下: close all; %关闭当前所有图形窗口 ...

  9. Python+OpenCV图像处理(十)—— 图像二值化

    简介:图像二值化就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程. 一.普通图像二值化 代码如下: import cv2 as cv import numpy ...

随机推荐

  1. WPF 心形线算法

    今天在网上查找下心形算法公式,自己便按照公式写下来标记在博客,主要是方便以后查看! private int maxStep = 520; private double radius; private ...

  2. Windows Server 2008 HPC 版本介绍以及的Pack

    最近接触了下 这个比较少见的 Windows Server版本 Windows Server 2008 HPC 微软官方的介绍 http://www.microsoft.com/china/hpc/ ...

  3. Oracle中的for语句

    for语句是一个可预置循环次数的循环控制语句,他是一个循环计数器,通常是一个整形变量,通过这个循环计数器来控制循环执行的次数 语法如下: for variable_counter_name in [e ...

  4. MySQL 5.7.9的多源复制

    什么是多源复制? 首先,我们需要清楚 multi-master 与multi-source 复制不是一样的. Multi-Master 复制通常是环形复制,你可以在任意主机上将数据复制给其他主机. M ...

  5. UML 小结(1)- 整体阐述

    前言:              UML( Unified Modeling Language) 又称统一建模语言或标准建模语言,是始于1997年一个OMG标准,它是一个支持模型化和软件系统开发的图形 ...

  6. LintCode-Word Search II

    Given a matrix of lower alphabets and a dictionary. Find all words in the dictionary that can be fou ...

  7. NSStringDrawingOptions-b

    如果options参数为NSStringDrawingUsesLineFragmentOrigin,那么整个文本将以每行组成的矩形为单位计算整个文本的尺寸.(在这里有点奇怪,因为字体高度大概是13.8 ...

  8. arm-none-eabi-gcc,makefile,stm官方库构建stm32f4xx工程

    参考文章:http://www.stmcu.org/module/forum/forum.php?mod=viewthread&tid=603753&highlight=ubuntu ...

  9. 仅仅测试Word2016发布博客

    我来啦! 我走啦!     哈哈哈!   int main(int argc, char *argv[]) {     int mysocket; //建立一个socket后返回的值是int类型的. ...

  10. boost::bind

    bind并不是一个单独的类或函数,而是非常庞大的家族,依据绑定的参数个数和要绑定的调用对象类型,总共有十个不同的形式,但它们的名字都叫bind. bind接受的第一个参数必须是一个可调用对象f,包括函 ...