在vs环境中跑动sift特征提取(原理部分)
/*
*/
慢慢来:
三组共六个文件
imgfeatures.h 和imgfeatures.c 部分
枚举类型1:
feature_type
枚举类型2:
feature_match_type
两组特征颜色
#define FEATURE_OXFD_COLOR CV_RGB(255,255,0)
#define FEATURE_LOWE_COLOR CV_RGB(255,0,255)
述子长度
#define FEATURE_MAX_D 128
特征结构
feature
四个函数:
1、导入特征点
2、导出特征点
3、绘画特征点
4、计算两个述子之间的欧氏距离。
在描述特征点导入时:http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html
有这样一个说明
然后是实现
导入特征点时:
从文件中读取特征点,文件的组织格式应该是符合牛津视觉几何组的编码形式,或者符合大卫罗尔的编码格式。type这个地方的参数如果是 FEATURE_TYPE 那么她就会被按照牛津特征输入文件的方式对待,也就是牛津视觉几何组,详见http://www.robots.ox.ac.uk:5000/~vgg/research/affine/index.html
断点:仿射协变特征
概述:这个页面针对在任意图片中探测仿射不变特征的问题和区域探测述子的性能评估。【应该就是述子如何描述仿射不变特征,以及述子性能好坏的评估】
公开:
区域探测:
http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf【尺度仿射兴趣点不变检测】
http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/matas_bmvc2002.pdf【最稳定极值区域】
http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/tuytelaars_ijcv2004.pdf【基于仿射不变区域匹配广域分割场景】
http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/kadir04.pdf【放射不变显著区域检测】
All Detectors - Survey: T. Tuytelaars and K. Mikolajczyk, Local Invariant Feature Detectors - Survey. In CVG, 3(1):1-110, 2008.【学名是这个,如果找到的话,求联系~~~】
然后这个第五个文献找不到,希望高玩们可以一同帮忙找下
区域描述:
http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/lowe_ijcv2004.pdf【来自尺度不变关键点的独特图像特征】
性能评估:
http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/vibes_ijcv2004.pdf【仿射区域检测器们的对比】
http://www.robots.ox.ac.uk:5000/~vgg/research/affine/det_eval_files/mikolajczyk_pami2004.pdf【本地述子性能评估】
软件:
既没有linux,也没有matlab 就不想弄了。。。
测试数据:
下载一下就可以了
imgfeatures.c 就是一些实现的过程。
然后看下sift.h这个里面的东西也很简洁,忽然觉得这些东西有点儿像java里面的public函数。.c里面的倒都比较像private函数只能它里面使用。
看下sift.h 里面都有什么
一大堆变量的声明和两个函数
extern int sift_features(IplImage* img, struct feature** feat); extern int _sift_features(IplImage* img, struct feature** feat, int intvls,
double sigma, double contr_thr, int curv_thr,
int img_dbl, int descr_width, int descr_hist_bins);
并且好像在后面还是调用的关系,毕竟两个的名字十分相像。然后点点点的发现,就是调用的同一个函数。
所以sift的两个文件,就是用来找到sift特征点的。不过要怎么找寻呢。接下来可能就要看这个函数的内容了。
int _sift_features(IplImage* img, struct feature** feat, int intvls,
double sigma, double contr_thr, int curv_thr,
int img_dbl, int descr_width, int descr_hist_bins)
{
IplImage* init_img;
IplImage*** gauss_pyr, *** dog_pyr;
CvMemStorage* storage;
CvSeq* features;
int octvs, i, n = ; /* check arguments */
if (!img)
fatal_error("NULL pointer error, %s, line %d", __FILE__, __LINE__); if (!feat)
fatal_error("NULL pointer error, %s, line %d", __FILE__, __LINE__); /* build scale space pyramid; smallest dimension of top level is ~4 pixels */
init_img = create_init_img(img, img_dbl, sigma);
octvs = log(MIN(init_img->width, init_img->height)) / log() - ;
gauss_pyr = build_gauss_pyr(init_img, octvs, intvls, sigma);
dog_pyr = build_dog_pyr(gauss_pyr, octvs, intvls); storage = cvCreateMemStorage();
features = scale_space_extrema(dog_pyr, octvs, intvls, contr_thr,
curv_thr, storage);
calc_feature_scales(features, sigma, intvls);
if (img_dbl)
adjust_for_img_dbl(features);
calc_feature_oris(features, gauss_pyr);
compute_descriptors(features, gauss_pyr, descr_width, descr_hist_bins); /* sort features by decreasing scale and move from CvSeq to array */
cvSeqSort(features, (CvCmpFunc)feature_cmp, NULL);
n = features->total;
*feat = calloc(n, sizeof(struct feature));
*feat = cvCvtSeqToArray(features, *feat, CV_WHOLE_SEQ);
for (i = ; i < n; i++)
{
free((*feat)[i].feature_data);
(*feat)[i].feature_data = NULL;
} cvReleaseMemStorage(&storage);
cvReleaseImage(&init_img);
release_pyr(&gauss_pyr, octvs, intvls + );
release_pyr(&dog_pyr, octvs, intvls + );
return n;
}
在vs环境中跑动sift特征提取(原理部分)的更多相关文章
- 在vs环境中跑动sift特征提取(代码部分)
因为在前两天的学习中发现.在opencv环境中跑动sift特征点提取还是比较困难的. 所以在此,进行记述. 遇到的问题分别有,csdn不愿意花费积分.配置gtk困难.教程海量然而能跑者鲜.描述不详尽等 ...
- ASP.NET Core 中文文档 第三章 原理(11)在多个环境中工作
原文: Working with Multiple Environments 作者: Steve Smith 翻译: 刘浩杨 校对: 孟帅洋(书缘) ASP.NET Core 介绍了支持在多个环境中管 ...
- Windows环境下多线程编程原理与应用读书笔记(3)————Windows环境中的多线程实现(3)
纤程 纤程(fiber): 相当于用户级别的线程或轻进程.纤程由Win32库函数支持,对核心是不可见的.纤程可以通过SwitchToFiber显示至另一合作纤程,以实现合作纤程之间的协同.线程是在Wi ...
- Java多线程编程——并发编程原理(分布式环境中并发问题)
在分布式环境中,处理并发问题就没办法通过操作系统和JVM的工具来解决,那么在分布式环境中,可以采取一下策略和方式来处理: 避免并发 时间戳 串行化 数据库 行锁 统一触发途径 避免并发 在分布式环境中 ...
- 【转】Java多线程编程(十)-并发编程原理(分布式环境中并发问题)
转载地址:http://blog.csdn.net/leicool_518/article/details/42268947 在分布式环境中,处理并发问题就没办法通过操作系统和JVM的工具来解决,那么 ...
- SIFT特征提取分析
SIFT特征提取分析 sift 关键点,关键点检测 读'D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J] ...
- 计算机视觉-sift(1)原理
1999年由David Lowe首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004年再次经David Lowe整 ...
- SIFT特征原理简析(HELU版)
SIFT(Scale-Invariant Feature Transform)是一种具有尺度不变性和光照不变性的特征描述子,也同时是一套特征提取的理论,首次由D. G. Lowe于2004年以< ...
- 生产环境中,数据库升级维护的最佳解决方案flyway
官网:https://flywaydb.org/ 转载:http://casheen.iteye.com/blog/1749916 1. 引言 想到要管理数据库的版本,是在实际产品中遇到问题后想到的 ...
随机推荐
- CSS布局基础
(初级)css布局 一.单列布局1.基础知识块级元素 div p ul li dl dt 行级元素 img span input strong同一行显示.无换行2.盒子模型盒子模型 (边框border ...
- 第二百三十七天 how can I 坚持
最近好像迷上看小说了,<灵域>,而且也感觉会看小说了. 话说,今天好冷啊,真怕在路上冻着就冻萌了,寒风赤骨啊. 好想买个帽子.好想让送个帽子. 睡觉.
- Spark生态之Spark Core
- Linux管线命令
一.什么是管线命令 bash 命令运行的时候有输出的数据会出现! 那么如果这群数据必需要经过几道手续之后才能得到我们所想要的格式,应该如何来配置? 这就牵涉到管线命令的问题了 (pipe) ,管线命令 ...
- nyoj 20 吝啬的国度
吝啬的国度 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 在一个吝啬的国度里有N个城市,这N个城市间只有N-1条路把这个N个城市连接起来.现在,Tom在第S号城市, ...
- oracle merge用法
动机: 想在Oracle中用一条SQL语句直接进行Insert/Update的操作. 说明: 在进行SQL语句编写时,我们经常会遇到大量的同时进行Insert/Update的语句 ,也就是说当存在记录 ...
- HDU 3664 Permutation Counting (DP)
题意:给一个 n,求在 n 的所有排列中,恰好有 k 个数a[i] > i 的个数. 析:很明显是DP,搞了好久才搞出来,觉得自己DP,实在是太low了,思路是这样的. dp[i][j]表示 i ...
- 三、FreeMarker 模版开发指南 第三章 模版
章节内容如下: 总体结构 指令 表达式 插值 一.总体结构 实际上你用程序语言编写的程序就是模板,模板也被称为FTL(代表FreeMarker模板语言).这是为编写模板设计的非常简单的编程语言. ...
- linux使用getopt解析参数
getopt是linux下解析命令行参数的api.以linux内核代码的一个例子来说明: static void cmdline(int argc, char *argv[]){ int o ...
- 我的第一个javascript网页作业
1: <html> 2: <title> 3: 4: </title> 5: <body> 6: <style type="text ...