flume ng 1.3 安装(转)
http://blog.csdn.net/hijk139/article/details/8308224
业务系统需要收集监控系统日志,想到了hadoop的flume。经过试验,虽说功能不算足够强大,但基本上能够满足功能需求。Flume 是一个分布式、可靠和高可用的服务日志收集工具,能够和hadoop,hive等配置完成日志收集,存储,分析处理等工作,更详细的介绍可以参见apache网站。下面介绍下简单的安装配置方法
1,网上下载flume-ng安装包,分别部署在收集和接收日志文件的服务器上,服务器上需安装jdk 1.6以上,
http://flume.apache.org/download.html
tar -zxvf apache-flume-1.3.0-bin.tar.gz
2, 日志文件接收端端新建conf/flume-conf.properties server端的具体配置如下
从avro source端接收数据,然后写入到HDFS文件系统中
- [flume@ conf]$ cat flume-conf.properties
- agent.sources = avrosrc
- agent.channels = memoryChanne3
- agent.sinks = hdfsSink
- # For each one of the sources, the type is defined
- agent.sources.avrosrc.type = avro
- agent.sources.avrosrc.bind = 172.16.251.1
- agent.sources.avrosrc.port = 44444
- # The channel can be defined as follows.
- agent.sources.avrosrc.channels = memoryChanne3
- # Each channel's type is defined.
- agent.channels.memoryChanne3.type = memory
- agent.channels.memoryChanne3.keep-alive = 10
- agent.channels.memoryChanne3.capacity = 100000
- agent.channels.memoryChanne3.transactionCapacity =100000
- # Each sink's type must be defined
- agent.sinks.hdfsSink.type = hdfs
- agent.sinks.hdfsSink.channel = memoryChanne3
- agent.sinks.hdfsSink.hdfs.path = /logdata/%{hostname}_linux/%Y%m%d_date
- agent.sinks.hdfsSink.hdfs.filePrefix = %{datacenter}_
- agent.sinks.hdfsSink.hdfs.rollInterval = 0
- agent.sinks.hdfsSink.hdfs.rollSize = 4000000
- agent.sinks.hdfsSink.hdfs.rollCount = 0
- agent.sinks.hdfsSink.hdfs.writeFormat = Text
- agent.sinks.hdfsSink.hdfs.fileType = DataStream
- agent.sinks.hdfsSink.hdfs.batchSize = 10
如果flume和hadoop不是同一用户,需要注意相关权限问题
3,日志收集端的conf/flume-conf.properties server文件配置,这里收集二个日志文件到收集端
- agent.sources = tailsource-1 tailsource-2
- agent.channels = memoryChannel-1 memoryChannel-2
- agent.sinks = remotesink remotesink-2
- agent.sources.tailsource-1.type = exec
- agent.sources.tailsource-1.command = tail -F /tmp/linux2.log
- agent.sources.tailsource-1.channels = memoryChannel-1
- agent.sources.tailsource-2.type = exec
- agent.sources.tailsource-2.command = tail -F /tmp/linux2_2.log
- agent.sources.tailsource-2.channels = memoryChannel-2
- agent.sources.tailsource-1.interceptors = host_int timestamp_int inter1
- agent.sources.tailsource-1.interceptors.host_int.type = host
- agent.sources.tailsource-1.interceptors.host_int.hostHeader = hostname
- agent.sources.tailsource-1.interceptors.timestamp_int.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
- #agent.sources.tailsource-1.interceptors = inter1
- agent.sources.tailsource-1.interceptors.inter1.type = static
- agent.sources.tailsource-1.interceptors.inter1.key = datacenter
- agent.sources.tailsource-1.interceptors.inter1.value = BEIJING
- agent.sources.tailsource-2.interceptors = host_int timestamp_int inter1
- agent.sources.tailsource-2.interceptors.host_int.type = host
- agent.sources.tailsource-2.interceptors.host_int.hostHeader = hostname
- agent.sources.tailsource-2.interceptors.timestamp_int.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
- #agent.sources.tailsource-1.interceptors = inter1
- agent.sources.tailsource-2.interceptors.inter1.type = static
- agent.sources.tailsource-2.interceptors.inter1.key = datacenter
- agent.sources.tailsource-2.interceptors.inter1.value = linux2_2
- agent.channels.memoryChannel-1.type = memory
- agent.channels.memoryChannel-1.keep-alive = 10
- agent.channels.memoryChannel-1.capacity = 100000
- agent.channels.memoryChannel-1.transactionCapacity =100000
- agent.channels.memoryChannel-2.type = memory
- agent.channels.memoryChannel-2.keep-alive = 10
- agent.channels.memoryChannel-2.capacity = 100000
- agent.channels.memoryChannel-2.transactionCapacity =100000
- agent.sinks.remotesink.type = avro
- agent.sinks.remotesink.hostname = 172.16.251.1
- agent.sinks.remotesink.port = 44444
- agent.sinks.remotesink.channel = memoryChannel-1
- agent.sinks.remotesink-2.type = avro
- agent.sinks.remotesink-2.hostname = 172.16.251.1
- agent.sinks.remotesink-2.port = 44444
- agent.sinks.remotesink-2.channel = memoryChannel-2
4,后台运行
nohup bin/flume-ng agent -n agent -c conf -f conf/flume-conf.properties >1.log &
查看日志vi flume.log
端口连接情况 netstat -an|grep 44444
[flume@dtydb6 flume-1.4]$ netstat -an|grep 44444
tcp 0 0 ::ffff:172.16.251.1:44444 :::* LISTEN
5,测试方法
可以使用如下类似的脚本,定期向日志文件写入来进行测试
for i in {1..1000000}; do echo "LINUX2 PRESS ************* Flume log rotation $i" >> /tmp/linux3.log; sleep 0.0001; done
参考资料:
http://flume.apache.org/FlumeUserGuide.html
flume ng 1.3 安装(转)的更多相关文章
- flume ng系列之——flume安装
flume版本:1.5.0 1.下载安装包: http://www.apache.org/dyn/closer.cgi/flume/1.5.0/apache-flume-1.5.0-bin.tar.g ...
- Flume 学习笔记之 Flume NG概述及单节点安装
Flume NG概述: Flume NG是一个分布式,高可用,可靠的系统,它能将不同的海量数据收集,移动并存储到一个数据存储系统中.轻量,配置简单,适用于各种日志收集,并支持 Failover和负载均 ...
- Flume NG Getting Started(Flume NG 新手入门指南)
Flume NG Getting Started(Flume NG 新手入门指南)翻译 新手入门 Flume NG是什么? 有什么改变? 获得Flume NG 从源码构建 配置 flume-ng全局选 ...
- 高可用Hadoop平台-Flume NG实战图解篇
1.概述 今天补充一篇关于Flume的博客,前面在讲解高可用的Hadoop平台的时候遗漏了这篇,本篇博客为大家讲述以下内容: Flume NG简述 单点Flume NG搭建.运行 高可用Flume N ...
- 【转】Flume(NG)架构设计要点及配置实践
Flume(NG)架构设计要点及配置实践 Flume NG是一个分布式.可靠.可用的系统,它能够将不同数据源的海量日志数据进行高效收集.聚合.移动,最后存储到一个中心化数据存储系统中.由原来的Fl ...
- Flume NG简介及配置
Flume下载地址:http://apache.fayea.com/flume/ 常用的分布式日志收集系统: Apache Flume. Facebook Scribe. Apache Chukwa ...
- Flume NG 简介及配置实战
Flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用.Flume 初始的发行版本目前被统称为 Flume OG(original generation),属于 clo ...
- 【Flume NG用户指南】(1)设置
作者:周邦涛(Timen) Email:zhoubangtao@gmail.com 转载请注明出处: http://blog.csdn.net/zhoubangtao/article/details ...
- 分布式实时日志系统(二) 环境搭建之 flume 集群搭建/flume ng资料
最近公司业务数据量越来越大,以前的基于消息队列的日志系统越来越难以满足目前的业务量,表现为消息积压,日志延迟,日志存储日期过短,所以,我们开始着手要重新设计这块,业界已经有了比较成熟的流程,即基于流式 ...
随机推荐
- TOJ 1721 Partial Sums
Description Given a series of n numbers a1, a2, ..., an, the partial sum of the numbers is defined a ...
- TOJ 3488 Game Dice
描述 In the game of Dungeons & Dragons, players often roll multi-sided dice to generate random num ...
- lxml库介绍及实例
XPath常用规则 表达式 描述 nodename 选取此节点的所有子节点 / 从当前节点选取直接子节点 // 从当前节点选取子孙节点 . 选取当前节点 .. 选取当前节点的父节点 @ 选取属性 h ...
- 深入理解JavaScript系列(13):This? Yes,this!
介绍 在这篇文章里,我们将讨论跟执行上下文直接相关的更多细节.讨论的主题就是this关键字.实践证明,这个主题很难,在不同执行上下文中this的确定经常会发生问题. 许多程序员习惯的认为,在程序语言中 ...
- MySql存储引擎MyISAM和InnoDB的区别
1.MySQL默认采用的是MyISAM. 2.MyISAM不支持事务,而InnoDB支持.InnoDB的AUTOCOMMIT默认是打开的,即每条SQL语句会默认被封装成一个事务,自动提交,这样会影响速 ...
- 序列化json和protobuf大小比较
使用protobuf序列化为二进制和json序列化字符串大小比较 代码demo package com.gxf.demo; import java.io.*; public class Ptotobu ...
- PAT 1030 Travel Plan
#include <cstdio> #include <cstdlib> #include <vector> #include <queue> #inc ...
- How can I use Server.MapPath() from global.asax?
引用: using System.Web.Hosting; string filePathcsv = ""; string file = ""; string ...
- Css:Conditional comments 条件注释
http://msdn.microsoft.com/en-us/library/ms537512(VS.85).aspx http://www.quirksmode.org/css/condcom.h ...
- cf1072D. Minimum path(BFS)
题意 题目链接 给出一个\(n \times n\)的矩阵,允许修改\(k\)次,求一条从\((1, 1)\)到\((n, n)\)的路径.要求字典序最小 Sol 很显然的一个思路是对于每个点,预处理 ...