题意:俩智障又在玩游戏。规则如下:

给定n个点,m条无向边(m<=n-1),保证无环,对于每一个联通块,编号最小的为它们的根(也就是形成了一片这样的森林),每次可以选择一个点,将其本身与其祖先全部删除,不能操作者输。判断先手胜负。

题解:比较神的一道题。

我们现在要解决的问题是怎么求解一棵子树的SG值,首先把根删掉的情况考虑,这很好办,直接把子树的sg异或起来就好,关键是如果删除点在子树里怎么办。

这里用到了一个巧妙的东西,trie。怎么会用这个呢?因为删除子树里的节点就相当于是子树里这种对应的情况再异或上外边子树的sg。但是我们不可能用一般的方法来存一棵子树里所有的sg。这个时候trie应运而生。我们处理子树之后,把它合并上来,就能得到当前节点的所有拓展局面的sg了。这里注意,合并子树前要先在子树上打一个tag(因为它是要异或上外面所有子树sg的)。

算法很清晰了,dfs下去,合并上来。这里的trie还要打tag。所有细节就这么多。

 #include<bits/stdc++.h>
using namespace std;
#define LL long long
#define N 100005 inline LL read(){
LL x=,f=; char a=getchar();
while(a<'' || a>'') {if(a=='-') f=-; a=getchar();}
while(a>='' && a<='') x=x*+a-'',a=getchar();
return x*f;
} int n,m,T,bin[],head[N],cnt,id,tag[N*],rt[N],ls[N*],rs[N*],sg[N],sz[N*];
bool vis[N]; struct edges{
int to,next;
}e[*N]; inline void insert(){
int u=read(),v=read();
e[++cnt]=(edges){v,head[u]};head[u]=cnt;
e[++cnt]=(edges){u,head[v]};head[v]=cnt;
} inline void init(){
bin[]=; for(int i=;i<=;i++) bin[i]=bin[i-]<<;
} inline void pushdown(int k,int level){
if(!tag[k]) return;
if(bin[level-]&tag[k]) swap(ls[k],rs[k]);
tag[ls[k]]^=tag[k]; tag[rs[k]]^=tag[k];
tag[k]=;
} inline void reset(){
for(int i=;i<=n;i++) head[i]=sg[i]=rt[i]=,vis[i]=;
for(int i=;i<=id;i++) tag[i]=ls[i]=rs[i]=sz[i]=;
cnt=; id=;
} void ins(int& k,int x,int level){ // 0 is on the left
k=++id; sz[k]=;
if(!level) return;
if(x&bin[level-]) ins(rs[k],x,level-);
else ins(ls[k],x,level-);
} int merge(int x,int y,int level){
if(!x || !y) return x|y;
pushdown(x,level); pushdown(y,level);
ls[x]=merge(ls[x],ls[y],level-); rs[x]=merge(rs[x],rs[y],level-);
sz[x]=sz[ls[x]]+sz[rs[x]]+(level?:);
return x;
} void dfs(int x,int fa){
vis[x]=; int t=;
for(int i=head[x];i;i=e[i].next){
if(fa==e[i].to) continue;
dfs(e[i].to,x); t^=sg[e[i].to];
}
ins(rt[x],t,);
for(int i=head[x];i;i=e[i].next){
if(fa==e[i].to) continue;
tag[rt[e[i].to]]^=t^sg[e[i].to];
rt[x]=merge(rt[x],rt[e[i].to],);
}
for(int now=rt[x],i=;i;i--){ // i is the i th digit int binary system
pushdown(now,i);
if(sz[ls[now]]<bin[i-]) now=ls[now];
else sg[x]|=bin[i-],now=rs[now];
}
} inline void solve(){
n=read(); m=read(); int ans=;
for(int i=;i<=m;i++) insert();
for(int i=;i<=n;i++) if(!vis[i]) dfs(i,),ans^=sg[i];
puts(ans?"Alice":"Bob");
} int main(){
init(); T=read();
while(T--){
solve();
reset();
}
return ;
}

[BZOJ4730][清华集训2016][UOJ266] Alice和Bob又在玩游戏的更多相关文章

  1. UOJ #266 【清华集训2016】 Alice和Bob又在玩游戏

    题目链接:Alice和Bob又在玩游戏 这道题就是一个很显然的公平游戏. 首先\(O(n^2)\)的算法非常好写.暴力枚举每个后继计算\(mex\)即可.注意计算后继的时候可以直接从父亲转移过来,没必 ...

  2. UOJ#266. 【清华集训2016】Alice和Bob又在玩游戏 博弈,DSU on Tree,Trie

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ266.html 题解 首先我们可以直接暴力 $O(n^2)$ 用 sg 函数来算答案. 对于一个树就是枚举 ...

  3. uoj#266. 【清华集训2016】Alice和Bob又在玩游戏(博弈论)

    传送门 完了我连sg函数是个啥都快忘了 设\(sg[u]\)为以\(u\)为根节点的子树的\(sg\)函数值,\(rem[u]\)表示\(u\)到根节点的路径删掉之后剩下的游戏的异或值 根节点\(u\ ...

  4. 【清华集训2016】Alice和Bob又在玩游戏

    不难的题目.因为SG性质,所以只需要对一棵树求出. 然后如果发现从上往下DP不太行,所以从下往上DP. 考虑一个点对子树的合并,考虑下一个删的点在哪一个子树,那么剩下的状态实际上就是把一个子树所有能达 ...

  5. UOJ 266 - 【清华集训2016】Alice和Bob又在玩游戏(SG 定理+01-trie)

    题面传送门 神仙题. 首先注意到此题的游戏是一个 ICG,故考虑使用 SG 定理解决这个题,显然我们只需对每个连通块计算一遍其 SG 值异或起来检验是否非零即可.注意到我们每删除一个点到根节点的路径后 ...

  6. [UOJ266]Alice和Bob又在玩游戏

    [UOJ266]Alice和Bob又在玩游戏 Tags:题解 作业部落 评论地址 TAG:博弈 题意 不同于树的删边游戏,删掉一个点删去的是到根的路径 题解 这题只和计算\(SG\)有关,博弈的有关内 ...

  7. uoj266[清华集训2016]Alice和Bob又在玩游戏(SG函数)

    uoj266[清华集训2016]Alice和Bob又在玩游戏(SG函数) uoj 题解时间 考虑如何求出每棵树(子树)的 $ SG $ . 众所周知一个状态的 $ SG $ 是其后继的 $ mex $ ...

  8. bzoj4730: Alice和Bob又在玩游戏

    Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...

  9. 【bzoj4730】 Alice和Bob又在玩游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=4730 (题目链接) 题意 给出一个森林,两个人轮流操作,每次把一个节点以及它的祖先全部抹去,无节点可 ...

随机推荐

  1. CodeIgniter框架——创建一个简单的Web站点(include MySQL基本操作)

    目标 使用 CodeIgniter 创建一个简单的 Web 站点.该站点将有一个主页,显示一些宣传文本和一个表单,该表单将发布到数据库表中. 按照 CodeIgniter 的术语,可将这些需求转换为以 ...

  2. 《从零开始学Swift》学习笔记(Day 40)——析构函数

    原创文章,欢迎转载.转载请注明:关东升的博客 与构造过程相反,实例最后释放的时候,需要清除一些资源,这个过程就是析构过程.在析构过程中也会调用一种特殊的方法deinit,称为析构函数.析构函数dein ...

  3. 一、docker临时记录

    docker 临时记录(阿里云centos7.2.1511 ) 查看系统版本号 适用于Redhat/CentOS: [root@iz2zecm4ndtkaue32tynx5z ~]# cat /etc ...

  4. Java工程师面试题整理[社招篇]

    http://blog.csdn.net/jackfrued/article/details/44921941 1.面向对象的特征有哪些方面?2.访问修饰符public,private,protect ...

  5. node.js 关于跨域和传递给前台参数

    /*为app添加中间件处理跨域请求*/ app.use(function(req, res, next) { res.header("Access-Control-Allow-Origin& ...

  6. git push 推送大文件失败的处理办法

    不小心把数据库备份文件放到git目录里了,导致无法上传代码. 首先参考了 这篇文章 http://www.cnblogs.com/qmmq/p/4604862.html. 按照文中一开始说的去做,可还 ...

  7. opencv如何打印长图?

    cv::Mat longMap(std::vector<cv::Mat> &set) { int matNumber = set.size(); int width = set[0 ...

  8. 我的Android进阶之旅------>Android中adb install 安装错误常见列表

    adb的安装过程分为传输与安装两步. 在出错后,adb会报告错误信息,但是信息可能只是一个代号,需要自己定位分析出错的原因. 下面是从网上找到的几种常见的错误及解决方法: 1.INSTALL_FAIL ...

  9. Js算两经纬度间球面距离

    function GetDistance( lat1, lng1, lat2, lng2){ var radLat1 = lat1 * Math.PI / 180.0 var radLat2 = la ...

  10. 20170401 ABAP调用CIS webservice

    问题: SAP  abap SRM java  调webservice 不通, CIS java  这边的webservice 可以通, WHY? key:请求头,系统框架的问题, LF:因为请求头的 ...